The weather service SWACI and its estimating propagation

The ionosphere weather service SWACI and its capability for estimating propagation effects of transionospheric radio signals Norbert Jakowski Institut...

4 downloads 520 Views 3MB Size
The ionosphere weather service SWACI and its  capability for estimating propagation effects of  transionospheric radio signals Norbert Jakowski  Institute of Communications und Navigation German Aerospace Center Kalkhorstweg 53, D-17235 Neustrelitz, Germany

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany 

Page 1

OUTLINE Space Weather Application Center  Ionosphere (SWACI) Ground based ionospheric monitoring Space based ionospheric monitoring

Radio wave propagation through the ionosphere Range errors (regular effects)

Space weather impact Storms TIDs Scintillations Impact of solar radio bursts on GPS

Summary & Conclusions LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 2

Ground and space based ionosphere monitoring Monitoring of the Ionosphere by: - GNSS Ground stations 1 CHAMP

2

over a full solar cycle Europe, since 1995 North pole area, since 2001 South pole area, since 2002

3

- LEO Satellites carrying GNSS receivers onboard

1

Radio occultation Topside reconstruction

2 3

CHAMP since 2001 GRACE since 2008

- Non-GNSS based techniques Vertical sounding + GNSS Beacon measurements Space Weather Application Center

SWACI LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 3

Data basis - ground based measurements GNSS- Networks used in SWACI SAPOS ascos IGS (since 1995) EUREF

GNSS data provision via NTRIPtechnology in 1s streaming mode SWACI I (30 GPS stations)  SWACI II (300 GPS Stations) New Monitoring concept GPS Data coverage (example) 17/05/2002 12:00UT, Elevation > 30° Ground stations Piercing points

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 4

Dual frequency GNSS measurements Total Electron Content

TECV = ∫ ne (h) dh ne(h) e

χ

Receiver

hI RE

Center of Earth

f12 − f 22 ΔP = P2 − P1 = K 2 2 TEC + ε off f1 f 2 ath rayp

s

GNSS

TEC can be derived from dual  frequency GNSS measurements.

K d I = 2 ⋅ TEC f Ionospheric range error up to about 100 m Estimation of  ionospheric  perturbation degree is a  practical need Statistics and case studies required

GPS based TEC measurements and  mapping in DLR Neustrelitz Europe post proc. (1 day) since 1995  http://www.kn.nz.dlr.de/daily/tec-eu operational  (5 min)  since 2005  http://swaciweb.dlr.de North Pole post proc. (1 day) since 2002 http://www.kn.nz.dlr.de/daily/tec-np LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 5

GNSS based TEC – Monitoring

Sample: 16 Stations

TEC monitoring over Europe in DLR Neustrelitz since 1995 based on dual  frequency GPS measurements of IGS, EUREF, ascos networks Model assisted technique to calibrate instrumental biases and to  reconstruct TEC maps from GPS measurements

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 6

Storm on 29 October 2003 / Polar TEC Polar TEC on 29  October 2003  derived from IGS ground based measurements Map resolution Τime: 10 min Latitude: 2.5 deg Longitude: 7.5 deg

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 7

Beacon satellite measurements in SWACI

Ionospheric traces

Two-station calibration method applied Neustrelitz (DLR)

Wachtberg (FGAN)

Differential carrier phase measurements (150/400MHz) at two stations allow calibration of  TEC by two-station calibration method High sensitivity of beacon measurements (gravity wave and ionisation front detection) Snapshot character of measurements (advantage for studying spatial structures) Several satellites can be used (e.g. OSCAR, FORMOSAT) LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 8

TEC forecast NRT TEC

Forecast 1 h ahead

Quality of forecast

Near real time reconstruction of TEC over Europe (update within 5 min.) Hourly predictions of TEC over Europa Evaluation of the previous prediction by the percentage deviation fom the measurements at the corresponding time.  LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 9

GNSS sounding of the ionosphere onboard a LEO satellite

GPS

GPS Satellite Radio Signal LEO Orbit

CHAMP GRACE LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 10

Space based monitoring onboard CHAMP Topside reconstructions 28 / 29 October 2003

IRO Profiling

night

Automatic retrieval of electron density profiles ( > 70% successfully) More than 300,000 profiles on global

day

15-16 3D reconstructions/day More than 30,000 reconstructions obtained so far

scale retrieved so far in DLR 

Data access via http://swaciweb.dlr.de LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 11

Topside ionosphere / plasmasphere sounding Galileo

10 0 -10 -20

Distance / 103 km

20

GPS

-20

-10

0

10

Distance / 103 km

20

2D projection of a typical radio link distribution for a full CHAMP revolution within 93 minutes. The GPS navigation data measured onboard CHAMP (0.1  Hz sampled) provide up to  about 3000 measurements during one revolution usable for the reconstruction of the electron density distribution. Assimilation of the TEC data obtained for one revolution into the PIM model reveals the 2 D  electron density distribution close to the CHAMP orbit height. S. Heise, et al., Sounding of the Topside Ionosphere/Plasmasphere Based on GPS Measurements from CHAMP: Initial Results, Geophysical Research Letters, 29, No. 14, 10.1029/2002GL014738, 2002 LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 12

SWACI Web Portal

http://swaciweb.dlr.de

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 13

Radio wave propagation through the ionosphere Electron density 1,2 m 2,7 m

100    200    300

Height / km

1,1 m

Ionosphere LoS

ρ

Night

Ray path

s

Day

f2 f1

f1 > f2

Refraction

Ionosphere causes • • •

Signal delay Fluctuations of signal strength Rotation of Polarisation plane

All radio systems operating at frequencies < 10 GHz are concerned LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 14

Radio wave propagation Optical path length (L) along ray path from satellite to receiver

L = ∫ nds

LoS

n refractive index ds ray path element

ρ Ray path

s

Geometric path length or true range ρ

ρ = L +

R

∫ (1 − n) ds

− ΔsB

S

phase delay

excess path length

f1> f2 f2

f1 Refraction

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 15

Radio wave propagation - Refractive index - 1 Refractive index n of the ionosphere (Appleton-Hartree formula)

n2 = 1 −

X=

Y =

fp f

2

fg f

2 X (1 − X ) 2 (1 − X ) − Y T2 ± [ Y T4 + 4 (1 − X ) 2 Y L2 ]1 / 2 f p = e 2 n e /( 4 π 2 m e ε 0 )

Plasma frequency < 30 MHz

f g = eB /( 2 π m e )

Gyro frequency ≈ 1.4 MHz 

Y T = Y sin Θ

Y L = Y cos Θ

me: electron mass, ε0: free space permittivity,  ne: electron density, B: magnetic induction, f : signal frequency,  Θ : angle between ray direction and B field vector  +/- signs are related to ordinary / extra-ordinary waves LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 16

Radio wave propagation - Refractive index - 2 n = 1 −

Phase refractive index

n

gr

= n + f ⋅

dn df

Group refractive index

f

2 p

2 f

2

±

f

n

gr

= 1 +

2 f

2

3

Second order term

2 p

f g cos Θ 2 f

First order term

f

2 p

m

f

2 p

f g cos Θ f

3



f

4 p

8 f

4

Third order term

+

3 f 8 f

4 p 4

The ionosphere is a dispersive and non-isotropic propagation medium. The ionospheric impact becomes smaller with increasing frequency.

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 17

Phase delay Phase delay: R

dI =

(1 ) (2) (3) n ds d d d − = + + = ( 1 ) I I I ∫ S

p q + f 2 2f

3

+

u 3f

4

R

p = 40.3 ∫ ne ds = 40.3 ⋅ TEC S

Total electron content R

q = 2.26 ⋅1012 ∫ B cos Θ ⋅ ne ds S

q ≈ 2.26 ⋅1012 ⋅ B cos Θ ⋅ TEC R

u = 2437 ∫ n e2 ds S

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 18

Ionospheric Range Error - 1st order TEC

Because the ranging error is directly proportional to TEC,  there is a close relationship to  the ionospheric behaviour. Three correction options for single frequency users

Elevation: 10 °

0

d

(1) I

=

K f2

10 20 30 GPS (L1) Range error (m)

∫ ne ds =

K ⋅ TEC 2 f

40 m

IRE may be corrected by a wellqualified ionospheric model IRE may be corrected by using vertical TEC-maps that enable the extraction of specific correction information needed by a  single frequency user (EGNOS) Extraction of TEC by combining Code and carrier phase measurements

Jakowski, N., TEC Monitoring by Using Satellite Positioning Systems, Modern Ionospheric Science, (Eds. H.Kohl, R. Rüster, K. Schlegel), EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp 371-390,1996

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 19

Ionospheric Range Error – 2nd order Anisotropy of the ionosphere due to the geomagnetic field B

ε: 10° ε: 30° ε: 60°

TECV: 100 TECU ε: elevation angle

B ΦRx: 51° N, λTx: 10° E

Ionospheric 2nd order errors are usually ignored in the measurement praxis (< 20 cm).

d

(2) I

KF = 3 f

∫ B cos Θ ⋅ n ds e

Hoque,M.M., N. Jakowski, Mitigation of higher order ionospheric effects on GNSS users in Europe, GPS Solutions, DOI 10.1007/s10291-007-0069-5, 2007 Hoque, M. M., N. Jakowski, Estimate of higher order ionospheric errors in GNSS positioning, Radio Science, 2008 LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 20

Solar Flux Index F10.7cm

Solar radiation impact on the ionosphere 300

Solar FluxRadio Index F10.7cm Solar Flux

Index F10.7cm

Long-term variation 11- years cycle

Mid-term variation 200

27- days rotation period Solar wind and CME‘s

Short-term variation

100

Solar eruptions (Flares)

Electron ContentContent Total Electron 80 Total 50°N; 15°E 13UT

60

50°N; 15°E 13:00 UT

12

8 40

20

0

4

Ionospheric Range Error/ m

Total Electron Content/ TECU

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Year

DLR 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Year

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 21

Solar flare induced storm on 28 October 2003 Strong Solar Flare was observed on 28 October 2003 at 11:05 UT Total solar irradiation enhances within a few minutes by 267 ppm Rapid and strong increase of TEC at all GPS measurements (range error up to 3.5 m)

TECr / TECu

Number of usable GPS measurements dropped down from 30 to 7

Time UT/ hrs.

Geographic Latitude / °N LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 22

Magnetosphere

Das ionospheric weather is strongly coupled with processes in the magnetosphere LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 23

Ionospheric perturbations on 29 / 30 October 2003

IMF / nT

Numerous perturbations in Com/Nav Systems in Europe and in the USA Close correlation of TEC behaviour with the southward component of the IMF

UNPERTURBED

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 24

Latitude / °N

Propagation of TIDs during ionospheric storms

Universal Time / hrs

TIDs pattern on 23 May 2002 (v SW≈ 800 m/s)

Wavelike propagation of disturbances during the storm on 20 November 2002  Ionosphärische ≈ 800 m/s) observed (southward propagation, speed Störungsprozesse Knowledge of direction and speed of perturbation fronts enables short term über Europa forecast Storm related TIDs: scale length ≈ 2000km, period ≈60min, speed ≈ 680m/s LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 25

Radio scintillations in L-band Plasma turbulences • •

High Latitudes Low latitudes

Turbulences of Plasma density Jicamarca, Peru

⎛ I2 − I S4 = ⎜ 2 ⎜ I ⎝

2

1/ 2

Fluctuations of

⎞ ⎟ Signal strength ⎟ ⎠

Loss of P1, P2, L1, L2 GPS phases in a dual frequency GPS receiver requires safety concept to solve the positioning and navigation tasks by single frequency use only, complete loss also observed LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 26

Scintillation characteristics Amplitude spectrum of scintillation event on L1 signal

Occurrence Probability /%

~ f -3

Occurrence probability of S4 > S4 cutoff

Solar Radio Flux F10.7 80.0

73.1

Left hand side: PRN 25 amplitude spectrum during scintillation Right hand side: Occurrence probability of S4 > S4cutoff  measured in Bandung in  2006 and 2007 LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 27

Safety of Life application - Aviation GPS signal amplitude

05.04.2006

Loss of signal

SoL applications require high integrity, continuity and  availability of the signals Service must be robust to severe or worst case ionospheric  conditions Ground based augmentation systems require ¾ ¾

Definition of an ionospheric ‘threat model’ (worst case) Detection of ionospheric perturbations (GBAS/external services)

Ionosphere ‚Threat model‘

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 28

Impact of Solar Radio Bursts on GPS Receivers December 6, 2006

Solar Radio Burst

Effect on GPS Receivers Source: P. Doherty

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 29

GPS receivers impacted by Solar Radio Burst All Receivers Receivers impacted by the solar radio burst

The yellow markers indicate GPS receivers in the International Global Navigation Satellite System Service (IGS) and the Continuously Operating Reference Station (CORS) networks. The red markers receivers that were tracking fewer than 4 GPS satellites during the peak of the solar radio burst. For a navigation solution, the GPS receiver needs to be tracking 4 or more GPS satellites. Source: P. Doherty LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 30

Summary SWACI provides regular ionosphere data service (e.g. ground based TEC over Europe 5 min update)

Radio systems operating at frequencies <10 GHz should take into account ionospheric impact High precision ranging requires the mitigation of higher order refraction effects (bending, Faraday rotation) Small scale ionospheric irregularities may cause loss of  lock in GNSS  Solar radio bursts may seriously affect GNSS signals in  the L- band

LOFAR Workshop,  24/25 June 2009, Potsdam, Germany

Page 31