Chapter 3 Protecting Groups - Utah State University

1 Chapter 3: Protecting Groups I. Protecting Groups of Hydroxyl Groups Consider the stability and effect of anomeric group! Consider the solubility of...

57 downloads 795 Views 121KB Size
Chapter 3: Protecting Groups I. Protecting Groups of Hydroxyl Groups Consider the stability and effect of anomeric group! Consider the solubility of starting material (the choice of solvent)! Consider the reactivity of different hydroxyl groups! * DCM is common for pyranoses with 2-3 OH’s. For pyranose with more than 4 OH’s, use DMF or pyridine. * Nucleophilicity of OH groups on pyranoses (chair conformation) (Carbohydr. Res. 1987, 162, 159.) 1° OH > 2° OH Equatorial OH > axial OH Equatorial OH with vicinal axial OH (or OR) > Equatorial OH without vicinal axial OH (or OR) Examples: 6

OH

4

O

HO HO

1 2

3

HO

OMe

Estimated order of nucleophilicity: 6-OH > 2-OH > 3-OH ~ 4-OH

HO

6

OH O

4

OMe

HO 3

2

HO

1

Estimated order of nucleophilicity: 6-OH > 3-OH > 2-OH > 4-OH

1

(i) Alkyl ether type Sug

OH

Sug

OR

Advantages: * Relatively stable in harsh conditions (acidic, basic, reflux, etc.) * Enhance the reactivity of glycosylation due to electron-donating effect * More compatible to the conditions needed for deoxygenation or amino (azido) substitution * Selective protection is possible Disadvantages: * Relatively harder to remove (deprotect) * Conditions for protection and deprotection may not be compatible to other types of protecting groups (a) R = methyl (CH3, Me) * Not commonly used due to the difficulty of deprotection * Methoxy group can be found in naturally occurring unusual sugars

Protection

Deprotection

Reagent/Condition MeI, NaH in THF or DMF Me3O+BF4MeOTf, DCM, py., 80°C MeI, Ag2O BBr3, EtOAc or DCM SiCl4, NaH, DCM, CH3CN AlCl3, AlBr3 Ac2O, FeCl3, 80°C

Reference Tetrahedron Lett. 1989, 30, 641. J. Org. Chem. 1972, 37, 912. J. Am. Chem. Soc. 1980, 102, 7083. J. Org. Chem. 1979, 44, 4863. Synthesis 1982, 1048. Chem. Lett. 1979, 97. J. Org. Chem. 1974, 39, 3728

Examples: OH

O O SPh

O

1) CH3I, NaH, THF 2) AcOH, TFA, H2O

O SPh

HO

77%

OCH3

OH

2

(b) R = trityl, triphenylmethyl (Ph3C, Tr) * Excellent for selective protection of primary OH * Stable in basic but very labile in acidic conditions * Easy to observe with TLC * Deprotection can be tricky Protection Deprotection

Reagent/Condition TrCl, 3° amines, DCM TFA, t-BuOH HCl, CHCl3, 0°C TsOH, DCM, MeOH BF3, Et2O

Examples:

3

Reference Tetrahedron Lett. 1989, 30, 641. Carbohydr. Res. 1978, 60, 206. Carbohydr. Res. 1971, 17, 439. Tetrahedron Lett. 1977, 18, 3473. Can. J. Chem. 1978, 56, 2700

(c) R = methoxymethyl (CH3OCH2, MOM) * Can be incorporated at relatively weak basic conditions (3° amine) but needs relatively strong acid (TFA) to remove * Stable in basic conditions * The reagent, MOMCl, is considered carcinogenic

Protection

Deprotection

Reagent/Condition MOMCl, NaH in THF or DMF MOMCl, DIPEA, 0°C or r.t. CH2(OMe)2, TsOH, LiBr, r.t. Conc. HCl, MeOH Me2BBr, DCM TFA, DCM LiBF4, CH3CN, 80°C

Examples:

4

Reference J. Am. Chem. Soc. 1972, 94, 7827. Synthesis 1975, 276. Synthesis 1985, 74. Chem. Commun. 1974, 298. J. Am. Chem. Soc. 1981, 103, 3213. J. Am. Chem. Soc. 1981, 103, 3210. J. Org. Chem. 1986, 51, 635.

(d) R = benzyl (C6H5CH2, Bn) * Can be traceless removed using hydrogenolysis * Stable in basic conditions * Relatively stable in acidic conditions * Quenching excess reagent (BrBr) with MeOH can be tricky Reagent/Condition BnCl, Bu4N+-HSO4-, KOH BnBr, NaH, THF or DMF, TBAI BnBr, Ag2O, DMF, r.t.

Protection

Reference Tetrahedron Lett. 1975, 16, 3251. Tetrahedron Lett. 1976, 17, 3535. Bull. Korean Chem. Soc. 2003, 24, 163. J. Org. Chem. 1985, 50, 3940. J. Am. Chem. Soc. 1994, 116, 5647

BnBr, Bu2SnO or (Bu3Sn)2O, toluene, reflux BnOC(NH)CCl3, TfOH

J. Am. Chem. Soc. 1988, 110, 1624. Synthesis 1987, 568.

H2, Pd/C or Pd(OH)2/C TMSI, DCM BF3-OEt2, NaI, CH3CN Ac2O, cat.c. H2SO4, 0°C FeCl3, DCM

Deprotection

J. Org. Chem. 1977, 42, 3761. J. Chem. Res. Synop. 1985, 232. J. Org. Chem. 2004, 69, 1513. Tetrahedron: Asymmetry 1995, 857.

Examples: Ph

O O HO

1) (n-Bu3Sn)2O 2) BnBr

O HO

O O HO

Ph

Ph

O + BnO

OMe

O O BnO

O HO

OMe 10

:

OMe

1

(Synthesis 1994, 1121)

Ph

O O HO

HO

n-Bu4N+-HSO4BnBr, NaOH, DCM

O

O

Ph

HO

Ph

O

O BnO

OBn O

O O HO

+

OMe 30%

Ph

O O HO

n-Bu4N+-HSO4BnBr, NaOH, DCM

O HO

OMe

Ph

50%

O O HO

OMe

50%

O BnO

(Org. Lett. 2004, 6, 1365)

5

OMe

OMe

(e) R = p-methoxybenzyl (CH3OC6H4CH2, PMB) * More prone to oxidative cleavage than Bn but less prone to reductive cleavage than Bn * Stable in basic conditions * Relatively stable in acidic conditions

Protection

Deprotection

Reagent/Condition PMBCl, NaH, THF or DMF PMBOC(NH)CCl3, TfOH (NH3)2Ce(NO2)6, Ceric ammonium nitrate (CAN), CH3CN, H2O DDQ, DCM

6

Reference J. Org. Chem. 1984, 49, 51. Tetrahedron Lett. 1988, 29, 4139. Tetrahedron Lett. 1983, 24, 5364.

J. Am. Chem. Soc. 1985, 107, 4586.

(f) R = tetrahydropyranyl (THP) * Stability similar to glycosidic bond * Stable in basic conditions Reagent/Condition Dihydropyran, TsOH, DCM Dihydropyran, PPTS, DCM HOAc, THF, H2O PPTS, EtOH, 55°C TsOH, MeOH, r.t. MgBr2, Et2O, r.t.

Protection

Deprotection

Reference J. Org. Chem. 1979, 44, 1438. J. Org. Chem. 1977, 42, 3772. J. Org. Chem. 1979, 44, 1438. J. Org. Chem. 1977, 42, 3772. J. Am. Chem. Soc. 1978, 100, 1942. Tetrahedron Lett. 1987, 28, 439.

Examples:

(ii) Silyl ether type Sug

OH

+

R3Si

X

+

NR'3

Sug

OSiR3

+ H

NR'3 X

* Stability varies General reagents for protection: R3SiX with 3° amines (DIPEA, TEA, immidazole, lutidine, pyridine, etc) Common reagents for deprotection: TBAF, BF3, KF, or pyridine-HF Trimethylsilyl (TMS) Triethylsilyl (TES) Triisopropylsilyl (TIPS) t-Butyldimethylsilyl (TBS) t-Butyldiphenylsilyl (TBDPS)

Can be cleaved with K2CO3, MeOH or citric acid Can be cleaved with HOAc Possible for selective protection of 1° OH Selective protection of 1° OH Selective protection of 1° OH Relatively stable in basic condition

7

(iii) Ester type O O Sug

OH +

C

C R

Sug

O

R

+

HX

X

(a) R = trifluoroacetyl (TFA) General reagent for protection: trifluoroacetic anhydride with 3° amines (DIPEA, TEA, immidazole, lutidine, pyridine etc), DMAP as catalyst Common reagent for deprotection: weak acids or bases

(b) R = acetyl (Ac) General reagents for protection: Ac2O with 3° amines (DIPEA, TEA, immidazole, lutidine, pyridine etc) or Ac2O with cat. acids. Common reagents for deprotection: K2CO3, MeOH, cat. NaOMe in MeOH, or LiOH, THF, H2O (J. Org. Chem. 2004, 69, 1513) * anomeric acetyl group can be selectively removed with H2NNH2-HOAc or BnNH2 Examples:

8

(c) R = trimethylacetyl (Piv) * Can be used for selective protection General reagent for protection: pivaloyl chloride (PivCl) with 3° amines (DIPEA, TEA, pyridine etc) Reagent/Condition Bu4N+OH-, r.t. NaOH, EtOH, H2O t-BuOK DIBAL

Deprotection

Reference Tetrahedron Lett. 1979, 20, 3561. Tetrahedron Lett. 1973, 14, 317. J. Org. Chem. 1977, 42, 918.

Examples: OH

PivCl (2 equiv.) pyr.

O HO HO HO

OH HO

OPiv O HO HO PivO

OMe

PivCl (2 equiv.) pyr.

O

HO HO

OPiv HO

OMe

O

HO PivO OMe

OMe HO

HO

OH O SPh

HO

PivCl (2 equiv.) pyr.

OPiv O SPh

PivO HO

HO

(J. Org. Chem. 1998, 63, 6035)

9

(d) R = Benzoyl (Bz) * Can be used for selective protection General reagent for protection: benzoyl chloride (BzCl) with 3° amines (DIPEA, TEA, pyridine etc) * Less common method for protection: Benzoic acid, DEAD, PPh3

Deprotection

Reagent/Condition Cat. NaOMe, MeOH LiOH, THF/H2O (3/1) K2CO3, MeOH DIBAL

Examples:

10

Reference J. Org. Chem. 2004, 69, 1513. J. Org. Chem. 2004, 69, 1513.

II. Protecting Groups of 1,2- or 1,3-Dihydroxyl Groups Consider the formation of acetal (ketal) from diol and aldehyde (ketone)! Consider the solubility of ring or fused ring for selectivity! Six-membered ring: thermodynamically favored Five-membered ring: kinetically favored General Mechanism

11

(i) For selection between 1,3-diol and trans-1,2-diol O

HO O

O R

O

O

vs.

HO

O

R

(ii) For selection between 1,3-diol and cis-1,2-diol R HO

O

O

O vs.

O

R

O O

HO

R HO

O

R O

R

O O

vs.

O

R HO

O

(iii) For selection between trans-1,2-diol and cis-1,2-diol OH

OH OH O O

O

vs.

O HO O

O

12

(iv) Acetonide (isopropylidene) Common reagents for protection: acetone or Me2C(OMe)2 and acids (TsOH, PPTS, ZnCl2 etc) with removal of water Common reagents for deprotection: acids (TsOH, TFA, HCl etc) with addition of water Examples:

13

(v) Benzylidene Common reagents for protection: PhCHO or PhCH(OMe)2 and acids (TsOH, PPTS, ZnCl2 etc) with removal of water Common reagents for deprotection: acids (TsOH, TFA, HCl etc) with addition of water * Can be selectively converted into Bn or Bz Examples: Ph

O O HO

HO Ph

Br BzO HO

NBS, CCl4 BaCO3, reflux

O

O HO

OMe

OMe

O BzO

O NBS, CCl4 BaCO3, reflux

O HO HO

Br O

HO HO

OMe

OMe

(J. Org. Chem. 1969, 34, 1035) NaBH3CN TFA, DMF 90%

MeO

O O BnO

PMBO HO BnO

O OR NPhth

O OR NPhth NaBH3CN TMSCl, MeCN 51%

(J. Org. Chem. 2000, 65, 2410)

14

HO PMBO BnO

O OR NPhth

(vi) Cyclohexane-1,2-diacetals (CDA) OMe OMe

MeOH, CH(OMe)3 cat. H2SO4, reflux

O

OMe OMe

O

HO HO HO

HO

OMe

CDA, MeOH CH(OMe)3, cat. CSA reflux

O

OMe

HO O O

48%

HO

OMe

OMe

(Angew. Chem. Int. Ed. Engl. 1994, 33, 2290) Similar reagent: CH3C(OMe)2C(OMe)2CH3, or 2,3-butanedione

(vii) Silyl-based protecting group Triisopropyldisilyl (TIPDS) iPr

HO O

Z

iPr

O Si

O

Z

O HO

OH

Si

iPr

O

iPr

15

O

OH

(viii) Other examples N3 HO HO

N3 O

N3

Cyclohexone dimethyl ketal, TsOH-H2O, CH3CN

N3

HO HO

O N3

O HO

N3

N3 O

N3

O

OH

41%

(Org. Lett. 2004, 3, 1381)

16

O

III. Protecting Groups of Amino Groups (i) Masking NH2 (amino) as N3 (azido) * Organoazides can be explosive ([C+O]/N ≥ 3) ((a) P. A. S. Smith, Open-Chain Nitrogen Compounds, vol. 2, Benjamin, New York, 1966, 211 – 256; (b) J. H. Boyer, R. Moriarty, B. de Darwent, P. A. S. Smith, Chem. Eng. News 1964, 42, 6.) Examples: H2N HO

HO

HO

HO H2N O O O HO

NH2 NH2

O

N3 O O HO

N3 OH

O OH

O OH O

O H 2N

HO

HO

TfN3, Et3N, CuSO4, MeOH/H2O/CH2Cl2

NH2 OH

O

N3

O

OH

N3

OH

(J. Am. Chem. Soc. 1999, 121, 6527-6541; Tetrahedron Lett. 1996, 37, 6029-6032)

NaN3

1) SO2Cl2, MeCN 2) imidazole

O N3

S

N N

O

(Org. Lett. 2007, 9, 3797–3800)

17

R

NH2

CuSO3, K2CO3 MeOH

R

N3

N3 N3

The azido group can be converted (reduced) to amino group using the following methods: (1) H2, Pd/C; (2) PR3, THF, H2O; (3) LiAlH4; (4) thiols (HSCH2CH2SH, HSCH2CH2OH, OH HS

dithiothreitol

SH OH

etc)

* Hydrogenation can be * Mechanism of Staudinger reaction

18

* Staudinger reaction can be selective (J. Am. Chem. Soc. 2002, 124, 10773-10778; J. Org. Chem. 2007, 72, 4055-4066) N3

6'

O I

BnO BnO

1'

2'

N3

proton  (ppm)

6'

H-1 3.18 H-3 3.38 H-2' 3.51 H-6' 3.49/3.35

N3

O HO

3

II

O I

BnO BnO

PMe3

1

N3

H2N

OBn

6'

1'

2'

N3

N3

O BnO

1

II

3

1

N3

BnO

1'

2'

N3

N3

O BnO

III

1"

H-1 3.6 H-3 3.4 H-2' 3.00 H-6' 3.27/3.10 H-3" 3.78

O I

PMe3 then Cbz-Cl

O

1

BnO

3

N3

4

N3

II 1

O

5

O

1.0 M PMe3 in toluene (1.1 eq.), Boc-ON (2.4 eq.), toluene, -78oC to 10oC

N3

OAc proton d (ppm)

III

45%

O OAc

OAc

AcO

N3

O

O OAc

OAc

N3 O

AcO AcO Z

N3

N3 O AcO

28% OAc

O O

N3 O OAc O

N3

OAc

(mixed with minor N-3 Boc adduct)

1) TFA/CH2Cl2 2) EDC, HOBt, Et3N, NMP, DMF

N H

O

H N

O

: approximate value

HO

O

N3

a

OH

N3

N3 O

OAc

H-1 3.43 H-3 3.53 H-2' 3.16 H-6' 3.3a H-2''' 3.3a H-6''' 3.59/3.28

O 6"'

HN Cbz

O

AcO AcO

1"

IV

2"

N3

N3 2"'

OBn OBn

O

Per-azido per-benzyl tobramycin

N3 O AcO

III

1"

O I

AcO AcO

N3

O

N3

6'

II

3

OBn OBn

O 2" 3"N

N3

N3

BnO

proton  (ppm)

OAc

II

3

OBn

O I

BnO

N3

O HO

6,3',4'-tri-O-benzyltetraazidoneamine

N3

6'

1'

2'

N3

OAc

19

OH

H N OAc

O

N H

Z

Boc

N3

6'

N3 O I

AcO AcO

2'

N3

N3 O

II

3

1

O

AcO

O

1.0 M PMe3 in toluene (1.1 eq.), Boc-ON (2.4 eq.), toluene, -78oC to 10oC

N3

N3

N3 O AcO

31%

OAc

1"

O

AcO AcO

O O

III AcO OAc

AcO OAc

proton  (ppm) H-1 H-3 H-2' H-6'

Boc-ON:

3.4 3.5 3.25 3.3

CN O

O

N O

(ii) Phthalamide (intermediate involved in Gabriel amine synthesis) Common reagents for protection: phthalic anhydride Common reagents for deprotection: acids hydrazine, EtOH, reflux Example:

20

H N OAc

Boc

(iii) Carbamate-type Cl R

NH2

O R'

+

+

B

R

H N

O

+

H

R' O O

* Solvent selection is important. (a) 9-Fluorenylmethoxycarbonyl chloride (Fmoc-Cl) * Stable in acidic and neutral conditions * Easy to observe with strong UV absorption Common reagents for deprotection: amines (piperidine)

Cl

O O

(b) Di-tert-butyl dicarbonate , Boc anhydride (Boc2O) O

* Stable in basic and neutral conditions

O O

Common reagents for deprotection: acids (TFA)

21

B Cl

(c) Benzyl chloroformate , Carbobenzoxy chloride (Cbz-Cl, Z-Cl) Cl

* Stable in acidic, basic and neutral conditions

O O

Common reagents for deprotection: hydrogenolysis (H2, Pd/C))

(d) Allyl chloroformate (Alloc-Cl)

Cl

* Stable in acidic, basic and neutral conditions Common reagents for deprotection: Pd(0) reagents

22

O O