Design of DC-DC Converters - IEEE Entity Web Hosting

11/1/2007 IEEE SSCS - Oct. 2007 2 Design of DC-DC Converters DC-DC Converter Basics Topology and Operation of DCDC Converters Control Scheme for DCDC...

133 downloads 571 Views 805KB Size
Design of DC-DC Converters Frank Xi [email protected]

Monolithic Power Systems Inc. IEEE SSCS Dallas Chapter, October 2007

Design of DC-DC Converters „

DC-DC Converter Basics „ „

„

Topology and Operation of DCDC Converters Control Scheme for DCDC

DC-DC Converter Design Techniques „ „

System Level Modeling and Design Building Block Design Considerations

11/1/2007

IEEE SSCS - Oct. 2007

2

DC-DC Converter Basics „

DC-DC Converter is a Voltage Regulator „

„

„

Use Switches, Inductor and Capacitor for Power Conversion Switched Mode Operation

Why DC-DC Converters? „ „ „

High Efficiency Can Step-Down, Step-up, or Both, or Invert Can Achieve Higher Output Power

11/1/2007

IEEE SSCS - Oct. 2007

3

DC-DC Converter Basics „

Why not DC-DC Converters? „ „ „

„

Complex Control Loop Higher Noise and Output Ripple More External Components

Basic DC-DC Converter Topologies „

Majority of DC-DC uses PWM Control Operated in CCM Mode

11/1/2007

IEEE SSCS - Oct. 2007

4

DC-DC Converter Basics „

Step-down (Buck) VIN IIN

VSW S

D

IO

VOUT

IL

ID

VSW

L

IC

Basic Relationships „

C

T

VOUT IL

TON

TON VIN = D ⋅VIN T = D ⋅ I OUT

VOUT =

IO IIN

CCM Mode „ IL always supplies load „ IC small, independent of load I IN

ID

Continuous Conduction Mode (CCM) IL

„

DCM Mode 2

VOUT

IO Discontinuous Conduction Mode (DCM)

11/1/2007

TON V = 2 I O ⋅ L ⋅ T IN 2 TON + VIN

IEEE SSCS - Oct. 2007

5

DC-DC Converter Basics „

Step-up (Boost) L

VIN

VSW

D

IO

VOUT

IL

IC S

C

Basic Relationships „

VSW T

VOUT

TON

IL

TOFF

CCM Mode „ IL only supplies load during TOFF period „ IC large and load dependent VOUT =

T TOFF

I IN = I L =

IC

-IO Continuous Conduction Mode (CCM)

„

VIN =

1 ⋅ VIN 1− D

1 ⋅ I OUT 1− D

DCM Mode

IL

2IO ⋅ L ⋅ T VIN VIN 2 TON

TON + 2

IC

VOUT =

-IO Discontinuous Conduction Mode (DCM)

11/1/2007

IEEE SSCS - Oct. 2007

6

Common Control Architectures „

Modulation Scheme „

PFM (Pulse-Frequency-Modulation) „ „ „ „

„

Pulse Skipping, Hysteretic, Constant-on etc. High Efficiency at Light Load Inherently Higher Output Ripple Unmanaged Spectrum Noise

PWM (Pulse-Width-Modulation) „ „ „

11/1/2007

Fixed Frequency with Variable Duty Cycle Better Transient Response (except Hysteretic?) Most Widely Used IEEE SSCS - Oct. 2007

7

Common Control Architectures „

Control Method (for PWM) „

Voltage Mode „ „

„ „ „ „ „

11/1/2007

Regulates Output Voltage by Adjusting Duty Cycle Constant Ramp for Modulation, Better Noise Immunity LC Filter Contributes to Complex Conjugate Poles Loop Has No Information on Inductor Current Slower Response to Input Voltage Change Bandwidth Varies with Input Voltage Current Limit Done Separately IEEE SSCS - Oct. 2007

8

Common Control Architectures „

Current Mode „ „

„

„ „ „ „

11/1/2007

PCM (Peak-Current-Mode) Most Commonly Used Regulates Inductor Current to Satisfy Load Demand and Maintain Output Voltage Fast Current Loop makes Inductor to be a VCCS, eliminates Complex Conjugate Poles Easy Built-in Cycle-to-Cycle Current Limit Naturally Suitable for Multi-Phase Operation Current Sense Susceptible to Noise Need Slope Compensation for >50% Duty Cycle Operation IEEE SSCS - Oct. 2007

9

DC-DC Converter Design „

Examples of Common DC-DC Converters „ VIN

Voltage Mode Buck

S1

L

VSW

VOUT R1

RESR

CLK

RL S2

D’

VRAMP

R2

C

VEA

VSW VOUT D

Q

S

QB R

11/1/2007

CLK RST

VRAMP VEA

IL

IOUT

VFB EA

VREF

IEEE SSCS - Oct. 2007

10

Voltage Mode Buck Voltage Mode Buck Transfer Functions: vO (1 + sCRESR ) (1 + sCRESR ) ≈ VIN = VIN 2 L s s d 2 s LC + s ( + CRESR ) + 1 + 1+ RL Qω0 ω0 2

ω0 =

1 ,Q = LC 1 RL

1 L C + RESR L C

and d 1 = a( s) vFB VR where a ( s ) is the transfer function of the error amplifier

11/1/2007

IEEE SSCS - Oct. 2007

11

Voltage Mode Buck Control (Duty Cycle) to Output Transfer Function: Example: L=2.2uH, C=22uF, RESR=10m Ohm VIN=5V, VOUT=3.3V RL=10 Ohm FSW=1.5MHz VRAMP=100mV ω0 = 22.9kHz Q = ~15.8 ωZ = 700kHz

11/1/2007

IEEE SSCS - Oct. 2007

12

Voltage Mode Buck - Error Amp Ex. 1 Use low DC gain to set the bandwidth so that the phase margin is acceptable: R1

R2 VEA

VFB

Bandwidth: ~400kHz Phase margin: ~35° Conditionally stable

EA VREF

VEA = VREF + vEA = − LG = −

R2 (VREF − VFB ) R1

R2 vFB R1 R2 VIN (1 + sCRESR ) ⋅ s s2 R1 VR 1+ + 2 Qω0 ω0

Closed loop step response

Example: R2=500k, R1=100k, VR=100mV 11/1/2007

IEEE SSCS - Oct. 2007

13

Voltage Mode Buck - Error Amp Ex. 1 Some Improvements Can Be Added: „

„

Make VRAMP proportional to VIN -> Constant Bandwidth Add Feed-forward Cap on Feedback Resistor String -> better phase margin

Limitations of Low DC Gain: „ „ „ „

11/1/2007

Loose Output Regulation Need some ESR to Stabilize the Loop Small Modulation Ramp Sensitive to Noise DC Offset if Output Cap has large ESR

IEEE SSCS - Oct. 2007

14

Voltage Mode Buck - Error Amp Ex. 2 Use Type-III Compensation Network to Re-Shape Loop Frequency Response:

Example Design Steps: C C R 1. Set R1C2=100uS for desired BW of ~300kHz V C R R 2. Set 1st zero to be 1/5 of ω0: R1=1Meg, C1=30pF, ωz1=5.3kHz EA V V 3. Set 2nd zero to be 4x of ω0: C2=10pF, R3=200k, (1 + sC R )[1 + s ( R + R )C ] v ≈ −A ωz2=79.5kHz [1 + sR (1 + A )(C + C )](1 + sR C )(1 + sR C || C ) v 4. mid-band DC gain of 5: (1 + sC R )(1 + sR C ) V (1 + sCR ) ⋅ LG ≈ − A s s [1 + sR A C ](1 + sR C )(1 + sR C ) V + 1+ R3=200k ω Q ω 5. Set 2nd and 3rd pole to near 1 V ⋅ UGBW ≈ R C ⋅ V LC switching frequency for • High DC gain rolls off by dominant pole and, high frequency noise st phase shift recovered by 1 zero before ω0 attenuation: nd • 2 zero brings back phase shift above ω0 C3=0.2pF, ωp2=795kHz; • 2nd and 3rd pole attenuates high frequency noise R2=10k, ωp3=1.5MHz 3

2

2

FB

3

1

1

EA

REF

1 1

EA

3

2

2

0

3

FB

0

1

3

1 1

2

3

2

2

1

3

1

IN

ESR

0

2

3

0

1

2

2

1

3

R

2

0

0

IN

1

2

R

11/1/2007

IEEE SSCS - Oct. 2007

15

Voltage Mode Buck - Error Amp Ex. 2

• Modulation ramp VRAMP increased to

500mV for better noise immunity • Blue: control to output transfer function • Green: Type-III compensation error Amp transfer function • Red: Complete loop transfer function bandwidth: ~340kHz, PM: ~65 degree 11/1/2007

Compare to Error Amp Ex. 1: • Step response has less overshoot due to better phase margin • Settling is much slower due to 1st zero at low frequency

IEEE SSCS - Oct. 2007

16

DC-DC Converter Design „

VIN

Current Mode Buck (Peak Current Control) S1

L

VSW

VOUT R1

RESR

CLK

RL S2

D’

R2

C

VRAMP

VEA

RST RSEN

VSW VOUT

Slope Comp D

Q

S

QB R

IL

CLK RST

VRAMP VEA

IOUT

VFB EA VREF

11/1/2007

IEEE SSCS - Oct. 2007

17

Current Mode Buck Inductor Current Instability for Duty Cycle > 50%: ⎛ m ⎞ m ie [n + 1] = ie [n] ⋅ (− 2 ) = ie [0] ⋅ ⎜⎜ − 2 ⎟⎟ m1 ⎝ m1 ⎠

1. D=1/3: m2/m1=1/2 ie[n]

m1

m2 ie[n+1]

m2

m1 ie[n+1]

3. D=2/3 with slope compensation ma

m2 < 1 : ie attenuates over cycles m1 m2 > 1 : ie grows over cycles m1

2. D=2/3: m2/m1=2 ie[n]

Requires Slope Compensation: ie [n + 1] = ie [n] ⋅ (−

ie[n]

11/1/2007

m2 − ma ) m1 + ma

ma is chosen so that ie[n+1]

n

m2 − ma <1 m1 + ma

m2 , guaranteed stable 2 ma = m2 , 1 cycle correction

ex : ma =

IEEE SSCS - Oct. 2007

18

Current Mode Buck • Fast current loop regulates inductor peak current, can be modeled as a VCCS with output impedance Rx • Slower voltage loop provides reference for current loop Gm =

RX VIN

Gm

IO

VOUT R1

RESR RL

io 1 1 1 1 = = R T m vEA RSEN 1 + L S [(1 + a )(1 − D ) − 0.5] RSEN 1 + RL L m1 RX

where RX =

Switched Operation results in delay and sampling effect : H e (s) =

R2

C

VEA

1 + α 1 − e − sTS 1 + α ⋅ e − sTS sTS

Gm ( s ) ≈

EA VREF

Q=

1

m2 − ma m1 + ma

RSEN 1 RSEN

2

1 1 + α 1 − e − sTS − sTS RT m sTS 1 + L S [(1 + a )(1 − D ) − 0.5] 1 + α ⋅ e L m1 1 1 RL s s2 1+ + 2 1+ RX QωS ωS 1

π (1 + ma )(1 − D) − 0.5 m1

11/1/2007

where α =

Complete VCCS transconductance including frequency response : Gm ( s ) =

VFB

L ma TS [(1 + )(1 − D) − 0.5] m1

IEEE SSCS - Oct. 2007

=

2

1

π 1 − 2 D(1 − ma ) m2

19

Current Mode Buck Peak Current Mode Current Loop Transfer Function Example: L=2.2uH, VIN=5V, VOUT=3.3V, RL=10 Ohm RSEN = 0.5 Ohm FSW = 1.5MHz Blue: ma=0.5*m2 RX=19.4 Ohm Gm=1.32 A/V Q=1.87 Green: ma=m2 RX=6.6 Ohm Gm=0.80 A/V Q=0.64

11/1/2007

IEEE SSCS - Oct. 2007

20

Current Mode Buck Control to Output Transfer Function Equivalently Single-Pole System with Current Source Input vo R 1 1 1 + sCRESR = Gm ⋅ Z O = L vEA RSEN 1 + RL 1 + s + ( s ) 2 [1 + sC ( RL || RX )] RX Qω S ωS

Example: C=22uF, RESR=10m Ohm RSEN = 0.5 Ohm FSW = 1.5MHz RX=19.4 Ohm RL=10k, 1k, 100, 10, 1 Ohm

11/1/2007

IEEE SSCS - Oct. 2007

RL=10k, 1k, 100, 10, 1 Ohm

21

Current Mode Buck – Error Amp Error Amplifier Example: C1

a( s) = CC

RZ

vEA 1 + sCC RZ ≈ − A0 vFB [1 + sCC (ro + g m R1ro + RZ )](1 + sC1RZ )

(CC >> C1 ) where : g m is the transconductance of the error amp ro is the output impedance

R1 VFB

ie

EA

VEA

VREF

• Bandwidth defined by R1 and C1 • Much smaller CC, need large RZ • VFB more error during transient Example: gm=100uS, ro=10MOhm, R1=100kOhm, CC=25pF, RZ=1.5MOhm, C1=0.3pF 11/1/2007

IEEE SSCS - Oct. 2007

22

Current Mode Buck – Error Amp Complete Loop Transfer Function of Current Mode Buck: LG = −

RL 1 1 1 + sCRESR 1 + sCC RZ ⋅ ⋅ A0 RSEN 1 + RL 1 + s + ( s ) 2 [1 + sC ( RL || RX )] [1 + sCC (ro + g m ro R1 + RZ )](1 + sC1RZ ) RX QωS ωS

• 1st zero of error amp placed near output filter pole • ESR zero and 2nd pole of error amp are placed out of loop bandwidth BW obtained by setting | LG |= 1 : | LG ( sBW ) |≈ BW =

11/1/2007

IEEE SSCS - Oct. 2007

1 RSEN



RZ =1 sBW C R1 1



1 RZ 1 2π R1 RSEN C 23

DC-DC Converter Design „

Voltage Mode Boost

VIN

L

S2

VSW

VOUT CLK R1

RESR D’ D

S1

VRAMP RL

VEA R2

C

VSW VIN

IL D

Q

S

QB R

11/1/2007

IOUT

CLK RST

VRAMP VEA

VFB EA

IEEE SSCS - Oct. 2007

VREF

24

Voltage Mode Boost Voltage Mode Boost Transfer Functions: vO VIN ≈ d (1 − D) 2 s 2 (1 − D) , ω0 = LC

(1 + sCRESR )(1 − s

L ) 2 RL (1 − D)

LC L s ( + + CRESR ) + 1 (1 − D) 2 RL (1 − D) 2

ωRHP

RL (1 − D) 2 , = L

Q=

=

VIN (1 − D) 2

(1 +

s

ωZ

)(1 −

s

ωRHP

)

s s2 1+ + Qω0 ω0 2

1 1 (1 − D) RL

L C + (1 − D) RESR C L

and d 1 = a(s) vFB VR where a ( s ) is the transfer function of the error amplifier

11/1/2007

IEEE SSCS - Oct. 2007

25

Voltage Mode Boost - Effective Inductance Perturbation from Output to Inductor Current: diL (1 − D)vo = VIN − (1 − D)VO ⇒ iL = dt sL and L

I O = I L (1 − D) ⇒ io = iL (1 − D)

Impedance looking into the Inductor from Output: ZO =

vo sL = io (1 − D) 2

Thus the Effective Inductance

Leff =

L (1 − D) 2

This makes the ω0 of the LC Filter to Move with D 11/1/2007

IEEE SSCS - Oct. 2007

26

Voltage Mode Boost - RHP Zero Perturbation from Duty Cycle to Output Current: I O = I L (1 − D ) ⇒ io = iL (1 − D ) − d ⋅ I L = iL (1 − D ) − d ⋅ L

IO 1− D

d ⋅ VO diL = DVIN + (1 − D)(VIN − VO ) ⇒ iL ≈ dt sL

Right-Half-Plan Zero forms at frequency where: |

I d ⋅ VO (1 − D) |=| d ⋅ O | 1− D jω RHP L

ω RHP

RL (1 − D) 2 = L

Right-Half-Plan Zero exists for both Voltage Mode and Current Mode Boost 11/1/2007

IEEE SSCS - Oct. 2007

27

Voltage Mode Boost Control (Duty Cycle) to Output Transfer Function: Example: L=2.2uH, C=10uF, RESR=10m Ohm, VIN=2.5V, VOUT=5V, 10V, 15V, IOUT=100mA FSW=1.5MHz ω0 and ωRHP moves lower with increased duty cycle

11/1/2007

IEEE SSCS - Oct. 2007

28

Voltage Mode Boost – Type-III Error Amp Usually Type-III Compensation Network is Required: C3

C2

R2 VFB R3

C1

R1

EA

VEA

VREF

vEA (1 + sC1R1 )[1 + s ( R3 + R2 )C2 ] ≈ − A0 vFB [1 + sR3 (1 + A0 )(C1 + C3 )](1 + sR2C2 )(1 + sR1C3 || C1 ) LG ≈ − A0

(1 + sC1R1 )(1 + sR3C2 ) VIN ⋅ [1 + sR3 A0C1 ](1 + sR2C2 )(1 + sR1C3 ) VR (1 − D ) 2

Set BW to be lower than ωZ and ω RHP : BW : R1 ⋅ C2 ⋅

11/1/2007

VIN 1 1 = 1 ⇒ BW = VR sBW LC 2π

R1 ⋅ C2 ⋅ LC

VIN VR

(1 +

s

ωZ

1+

)(1 −

s

ω RHP

s s2 + 2 Qω0 ω0

)

Example Design Steps: 1. Estimate worst case ωRHP=300kHz 2. Set BW<100k: R1C2<2.75µs 3. Set both zeros near ω0: R1=100k, C1=100pF, R3=300k, C2=20pF, ωz1=16.0kHz, ωz2=26.5kHz 4. Bandwidth: fBW= 80kHz 5. Mid-band DC gain of 1/3 6. Set 2nd and 3rd pole to beyond ωRHP : R2=10k, C3=3pF ωp2=530kHz, ωp3=790kHz

IEEE SSCS - Oct. 2007

29

Voltage Mode Boost – Type-III Error Amp

• Adjust C1 to move 1st zero • Adjust R3 to move 2nd zero and mid-band gain • 2nd pole and 3rd poles suppress high frequency noise 11/1/2007

• Phase shift exceeds 180° at ω0 -> conditionally stable • Move 1st zero lower to improve phase shift -> much larger C1

IEEE SSCS - Oct. 2007

30

DC-DC Converter Design „

VIN

Current Mode Boost L

VSW

S2

VOUT CLK

R1

RESR D’

RL

VRAMP

S1

D

VEA

R2

C

RST VSW

VIN

RSEN Slope Comp D

Q

S

QB R

IL

CLK RST

VRAMP VEA

VFB

IOUT

EA VREF

11/1/2007

IEEE SSCS - Oct. 2007

31

Current Mode Boost Transfer Function of the Current Loop: Gm = RX VIN

Gm

IO

VOUT R1

RESR RL

R2

C

io 1 − D 1 = vEA RSEN 1 + RL 2 RX

where RX =

Similar to Peak Current Mode Buck Delay and sampling effect results in a 2 - pole system : Gm ( s ) ≈

VEA

VFB EA VREF

L 1 2L ( || ) 2 (1 − D) T [(1 + ma )(1 − D) − 0.5] DTS S m1

ωS = Q=

1− D 1 1 s s2 RSEN 1 + RL 1+ + 2 RX QωS ωS 2

π TS 2

1

π (1 + ma )(1 − D) − 0.5 m1

11/1/2007

IEEE SSCS - Oct. 2007

=

2

1

π 1 − 2 D(1 − ma ) m2

32

Current Mode Boost Control to Output Transfer Function: vo (1 − D) RL 1 1 = Gm ( s) ⋅ Z O = ⋅ vEA 2 RSEN 1 + RL 1 + s + ( s ) 2 ωS QωS 2 RX

ωRHP

(1 + sCRESR )(1 − [1 + sC (

s

ωZRHP

)

RL || RX )] 2

RL (1 − D) 2 = L

Example: VIN=2.5V VOUT= 5V, 10V, 15V, 20V L=2.2uH, C=10uF RESR=10m Ohm IOUT = 100mA RSEN = 0.5 Ohm FSW = 1.5MHz

11/1/2007

IEEE SSCS - Oct. 2007

33

Current Mode Boost – Error Amp Ex. Use the same error amp structure as on page 22: The Complete Loop Transfer Function: (1 − D) RL 1 1 T (s) = − ⋅ 2 RSEN 1 + RL 1 + s + ( s ) 2 2 RX QωS ωS

(1 + sCRESR )(1 − s [1 + sC (

s

ωZRHP

RL || RX )] 2

C1

CC

RZ

R1 VFB EA

VEA

VREF

) ⋅ A0

1 + sCC RZ [1 + sCC (ro + g m ro R1 + RZ )](1 + sC1RZ )

Generally Guideline: • To ensure loop stability, the unity-gain bandwidth is set to be 3-5x lower than the worst case RHP zero • The ESR zero and 2nd pole of the amplifier is placed higher than the RHP zero • The current loop poles are usually much higher than RHP zero 11/1/2007

IEEE SSCS - Oct. 2007

34

Current Mode Boost – Error Amp Ex. Loop Bandwidth can be estimated as: BW =

1 (1 − D) RZ ωRHP ⋅ ≤ 2π RSEN C R1 3

Since ωRHP

(RHP zero contributes < 18o phase shift) 2

V V ∝ RL (1 − D) = RL ( IN ) 2 = IN , BW ∝ (1 − D) VO VO ⋅ I O 2

Bandwidth should be set at max. duty cycle and load Example: VIN=2.5V, VOUT=5V, IO=500mA L=2.2uH, C=10uF, RSEN=0.5 Ohm, RZ=1M Ohm, ωZRHP=181kHz, BW chosen to be ~60kHz Calculate: R1:~300k Ohm 11/1/2007

IEEE SSCS - Oct. 2007

35

Current Mode Boost Complete Loop Transfer Function of Current Mode Boost Converter: Error Amplifier Example: R1=250k, RZ=1M CC=25pF, C1=0.3pF Output Current: 1mA, 10mA, 100mA, 500mA Loop BW: ~60kHz

11/1/2007

IEEE SSCS - Oct. 2007

36

DC-DC Converter – Building Blocks „

PWM Comparator „ „ „

Multi-Stage Gain -> Faster For Small Input Signal But, High-Gain Stage Has Longer Recovery Time So, Usually Low-Gain Amp(s) Followed by High-Gain Comparator

11/1/2007

IEEE SSCS - Oct. 2007

37

Building Blocks – PWM Comparator OTA based comparator with pre-amps

INP

INN COMP

11/1/2007

IEEE SSCS - Oct. 2007

OUT

38

Building Blocks – Error Amplifiers „

Error Amplifiers „

Folded-Cascode Error Amplifier

OUT

INN

Good: • Input Common Mode Down to Ground • Smaller Input Offset than OTA

INP BIAS

11/1/2007

But: • Difficult to get large Gm

IEEE SSCS - Oct. 2007

39

Building Blocks – Error Amplifiers „

Constant Gm Error Amplifier

I1

I1 R OUT

INN

INP

I2

11/1/2007

I2

Good: • Constant Gm Defined by R • Scalable Gm by Current Mirrors But: • Higher Input Offset due to Even More Current Mirrors • Additional Gm Regulation Loop

IEEE SSCS - Oct. 2007

40

DC-DC Converter Design Acknowledgement: Jian Zhou etc. for Review and Suggestions

Thank You For Your Attendance

11/1/2007

IEEE SSCS - Oct. 2007

41