Engineering Electromagnetics; William Hayt & John Buck

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012 e ...

101 downloads 689 Views 3MB Size
Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Preliminary material (mathematical requirements) Vector Analysis

Vector algebra:

Vector Calculus:

Addition; Subtraction; Multiplication

Differentiation; Integration

Vector: A quantity with both magnitude and direction. (Force F  10N to the east). Scalar:A quantity that does not posses direction, Real or complex. (Temperature T  20o .

Vector addition: 1) Parallelogram: A

B

A

A B

B

2) Head to Tail:

B

A

A B

B Chapter One

A

1

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Vector Subtraction: A B

A

B

B

A B

A B B

Multiplication by scalar: B  k A

A

2A

B  0.5A

B  3A

0.5A A

    

A

 3A

Commulative law: A  B  B  A Associative law: A  B  C  A  B  C Equal vectors: A  B if A  B  0 (Both have same length and direction) Add or subtract vector fields which are defined at the same point. If non vector fields are considered then vectors are added or subtracted which are not defined at same point (By shifting them)

Chapter One

B  2A

2

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

THE RECTANGULAR COORDINATE SYSTEM

y

x , y , z are coordinate

Right Handed System

variables (axis) which are mutually perpendicular.

x

z Out of page

z z 3 P 1,2,3

A point is located by its x , y and z coordinates, or as the intersection of three constant surfaces (planes in this case)

y 2

y

x 1

Chapter One

x

3

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

z z 3

P 1,2,3

surface (plane)

y

x 1 Surface (plane)

y 2

Three mutually perpendicular surfaces intersect at a common point

Chapter One

x

surface (plane)

4

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Increasing each coordinate variable by a differential amount dx , dy , and dz , one obtains a parallelepiped. z

P' x  dx , y  dy , z  dz 

P x , y , z  dz

dy

dx

y

Differential volume: dv  dxdydz

Chapter One

x

5

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Differential Surfaces: Six planes with dierential areas ds  dxdy ; ds  dzdy ;

ds  dxdz

dx 2  dy 2  dz 2

Differential length: from P to P’ dl 

VECTOR COMPONENTS AND UNIT VECTORS A general vector r may be written as the sum of three vectors;

z Projection of r into z-axis

z 3 C

Projection of r into x-axis

A

P 1,2,3 r B

y 2

y

x 1 Projection of r into y-axis

x

r  A BC A , B , and C arevector componentswith constant directions.

Unit vectorsˆa x , ˆa y , and ˆa z directed along x, y, and z respectively with unity

Chapter One

length and no dimensions.

6

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

ˆa x

z

ˆa z

ˆa y

ˆa z

ˆa z

ˆa y ˆa x

ˆa y

y

ˆa x

ˆa y

ˆa x

x

So, the vector r  A  B  C may be written in terms of unit vectors as:

r  A  B  C  Aˆax  B ˆay  C ˆaz vector components scalar components       A , B, C A , B ,C Where: A is the directed length or signed magnitude of A . B is the directed length or signed magnitude of B .

C is the directed length or signed magnitude of C . As a simple exercise, let rp (Position vector) point from origin (0,0,0) to P(1,2,3), then

rP  1ˆax  2ˆay  3ˆaz

rP are:

rPx  A  1 ; rPy  B  2 ; rPz  C  3 . Vector components of

rP are:

Chapter One

Scalar components of

7

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

rPx  A  1ˆax ; rPy  B  2ˆay ; rPz  C  3ˆaz . If Q(2,-2,1) then

rQ  2ˆax  2ˆay ˆaz And the vector directed from P to Q,

rPQ  rQ  rP (displacement vector)

which is given by

rPQ  2  1ˆax   2  2ˆay  1  3ˆaz  ˆax  4ˆay  2ˆaz z rPO

rQ

rP  rP

y

x

The vector

rP is termed position vector which is directed from the origin toward

Chapter One

the point in quesion.

8

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Other types of vectors (vector fields such as Force vector) are denoted:

F  F x ˆax  F y ˆay  F z ˆaz Where

Fx , Fy , F z

are scalar components, and

F x ˆax , F y ˆay , F z ˆaz

are the

vector components. The magnitude of a vector

B  B x ˆax  B y ˆay  B z ˆaz is;

B B A unit vector in the direction of

B x 2  B y 2  B z 2 B is; B

B B x ˆax  B y ˆay  B z ˆaz ˆaB   B B x 2  B y 2  B z 2 Let

ˆaB

B  B x ˆax  B y ˆay  B z ˆaz and A  Ax ˆax  Ay ˆay  Az ˆaz , then A  B  Ax B x ˆax  Ay  B y ˆay  Az  B z ˆaz

A  B  Ax  B x ˆax  Ay  B y ˆay  Az  B z ˆaz Ex:Specify the unit vector extending from the origin toward the point G(2,-2,-1). Ex: Given M(-1,2,1), N(3,-3,0) and P(-2,-3,-4) Find: (a) R MN (b) R MN  R MP (d) ˆaMP (e) 2rP  3rN

Chapter One

(c) rM

9

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

THE VECTOR FIELD AND SCALAR FIELD

Vector Field: vector function of a position vector r . It has a magnitude and direction at each point in space. v r   v x r ˆa x  v y r ˆay  v z r ˆaz

 v x x , y , z ˆa x  v y x , y , z ˆay  v z x , y , z ˆaz

Chapter One

Velocity or air flow in a pipe

10

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Scalar field: A scalar function of a position vector r . Temperature is an example T r   T x , y , z  which has a scalar value at each point in space.

T

T

3

2

T1

Ex:A vector field is expressed as S

x

125

 1  y  2  z  1 2

2

2

x  1ˆa

x

 y  2ˆay  z  1ˆaz



(a) Is this a scalar or vector field? (b) Evaluate S @ P 2,4 ,3 . (c) Determine a unit vector that gives the direction of S @ P 2,4 ,3 .

Chapter One

(d) Specify the surface f x , y , z  on which S  1 .

11

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

THE DOT PRODUCT

A  B  A B cos  AB  Which results in a scalar value, and  AB is the smaller angle between A and B . Projection of B into A

 B cos  AB 

A

 AB

B Projection of A into B

 A cos  AB 

A B  B A

since

A B cos  AB   B A cos  AB 

ˆax ˆax  ˆax ˆax cos 0  111  1

ˆay ˆay  ˆay ˆay cos 0  111  1 ˆaz ˆaz  ˆaz ˆaz cos 0  111  1

ˆax ˆaz  ˆax ˆaz cos 90o   110  0  ˆaz ˆax ˆay ˆaz  ˆay ˆaz cos 90o   110  0  ˆaz ˆay

Chapter One

ˆax ˆay  ˆax ˆay cos 90o   110  0  ˆay ˆax

12

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Let B  B x ˆax  B y ˆay  B z ˆaz and A  Ax ˆax  Ay ˆay  Az ˆaz , then A  B  Ax B x  Ay B y  Az B z 2

A  A  Ax2  Ay2  Az2  A  A 2  A  A  A

The scalar component of B in the direction of an arbitrary unit vector ˆa  is given by B ˆa  B

B ˆa   B ˆa  cos   

ˆa 

 B cos  

Scalar Projection of B into ˆa 

 B cos    B ˆa  The vector component of B in the direction of an arbitrary unit vector

Chapter One

ˆa  is given by B ˆa  ˆa  .

13

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

B



ˆa 

Vector Projection of B into ˆa 

 B ˆa  ˆa 

Distributive property: A  B  C  A  B  A  C Ex: Given E  y ˆax  2.5x ˆay  3ˆaz and Q(4,5,2) Find: (a) E @ Q. (b) The scalar component of E @ Q in the direction of

ˆan 

1 2ˆax ˆay  2ˆaz . 3

(c) The vector component of E @ Q in the direction of

1 2ˆax ˆay  2ˆaz . 3 (d) The angle  Ea between ErQ  and ˆan .

Chapter One

ˆan 

14

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

THE CROSS PRODUCT

A  B  A B sin AB aˆ n results in a vector A  B  A B sin AB  Direction of A  B  aˆ n

ˆan is a unit vector normal to the plane containing A and B . Since

there are two possible ˆan' s , we use the Right Hand Rule (RHR) to determine the direction of A  B . Cross product clearly results in a vector, and  AB is the smaller angle between A and B . B sin  AB  which is the height

A B

Of the parallelogram

B

ˆan

 AB A

A B sin  AB  Is the area of the parallelogram

Properties: A  B  B  A

A  B  C  A  B  A  C

Chapter One

 A B  B A

15

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

A  B  C  A  B  C ˆax ˆax  ˆax ˆax sin 0ˆan  0 ˆay ˆay  ˆay ˆay sin 0ˆan  0

ˆaz ˆaz  ˆaz ˆaz sin 0ˆan  0

y

z

RHR

x

Out of page

ˆax ˆay  ˆax ˆay sin 90o ˆan  111ˆan  ˆaz

ˆax ˆaz  ˆax ˆaz sin 90o ˆan  111ˆan  ˆay

ˆay ˆax  ˆay ˆax sin 90o ˆan  111ˆan  ˆaz ˆay ˆaz  ˆay ˆaz sin 90o ˆan  111ˆan  ˆax ˆaz ˆax  ˆaz ˆax sin 90o ˆan  111ˆan  ˆay

ˆaz ˆay  ˆaz ˆay sin 90o ˆan  111ˆan  ˆax Let B  B x ˆax  B y ˆay  B z ˆaz and A  Ax ˆax  Ay ˆay  Az ˆaz , then ˆa x ˆa y ˆa z A  B  A B sin  AB ˆan  Ax Ay Az Bx By Bz

Chapter One

 Ay B z  Az B y ˆa x  Ax B z  Az B x ˆa y  Ax B y  Ay B x ˆa z

16

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

CIRCULAR CYLINDRICAL COORDINATES

y

 ,  , z are coordinate variables

which are mutually perpendicular.

y

Remember polar coordinates (The 2D version)

P ( x , y ) or P( ,)



z

x

x

x   cos  

y   sin    is measured from x-axis

toward y-axis.

Including the z-coordinate, we obtain the cylindrical coordinates (3D version)

z

A point is located by its  ,  and z coordinates. Or as the intersection of three mutually orthogonal surfaces.

P ( x  1, y  2 , z  3) or P (   5 ,   63.4 o , z  3)

z 3



x 1

y 2 

y

Chapter One

x

17

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

z  z1

z

surface (plane)

P 1 , 1 , z 1 

ˆa z

ˆa

ˆa

  1

z1

Surface (plane)

  1 surface (cylinder)

1

y

1

x

Chapter One

1) Infinitely long cylinder of radius   1 . 2) Semi-infinite plane of constant angle   1 . 3) Infinite plane of constant elevation z  z 1 .

18

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

The three unit vectors ˆa z , ˆa , and ˆa are in the direction of increasing variables and are perpendicular  to the surface at which the coordinate variable is constant.

y ˆa

ˆa

ˆa z



y



x

x Chapter One

z

19

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Note that in Cartesian coordinates, unit vectors are not functions of coordinate variables. But in cylindrical coordinates ˆa , and ˆa are functions of  .

y

ˆa 2

ˆa1

2

2

z

ˆa 1

ˆa x

1

2

1

ˆa y

x

2

z

ˆa x

1

1

The cylindrical coordinate system is Right Handed: ˆa ˆa  ˆaz .

x

Chapter One

ˆa  2

y ˆa y

20

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Increasing each coordinate variable by a differential amount d , d , and dz , one obtains:

y

dd  area

d  arc length 

d 

d

x

z

Note that  and z are lengths, but  is an angle which requires a metric coefficient to convert it to length.



d

metric coefficient

Chapter One

arc length 

21

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

ds  ddz

z

ds  ddz

dz

ds  dd

y 

x

d

d

d

Differential volume: dv  dddz

Chapter One

Differential Surfaces: Six planes with dierential areas shown in the figure above. (Try it!)

22

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Transformations between Cylindrical and Cartesian Coordinates

z

From cylindrical to cart: x   cos  

z  z1

y   sin  

z z

From cart. To cyl.:

x  x1

1

1

y  y1 y

  x2 y2 y    tan   x 

x

1

Chapter One

z z

23

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Consider a vector in rectangular coordinates;

E  E x ˆax  E yˆay  E zˆaz Wishing to write E in cylindrical coordinates:

E  E  ˆa  E ˆa  E zˆaz From the dot product:

E   E ˆa

E   E ˆa

E z  E ˆaz

E   E x ˆax  E yˆay  E zˆaz  ˆa  E x ˆax ˆa  E y ˆay ˆa  E zˆaz ˆa         

?

?

?

E   E x ˆax  E yˆay  E zˆaz  ˆa  E x ˆax ˆa  E y ˆay ˆa  E zˆaz ˆa         

?

?

?

E z  E x ˆax  E yˆay  E zˆaz  ˆaz  E x ˆax ˆaz  E y ˆay ˆaz  E zˆaz ˆaz         

?

?

Chapter One

?

24

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

y

900   ˆa



ˆa y

ˆa

 ˆa x



y



z

x

x ˆa z

Clearly:

ˆax ˆa  ˆax ˆa cos    cos  

ˆay ˆa  ˆay ˆa cos 90o     sin   ˆax ˆa  ˆax ˆa cos 90o      sin  

ˆay ˆa  ˆay ˆa cos    cos   ˆaz ˆa  ˆaz ˆa cos 90o   0

ˆaz ˆa  ˆaz ˆa cos 90o   0 So:

E   E x cos    E y sin  

Or in matrix form

E    cos   sin    E x      E    sin   cos   E y 

Chapter One

E   E x sin    E y cos  

25

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

And, the inverse relation is:

E x   cos    sin   E       E y   sin   cos    E  

Chapter One

Note that the story is not finished here, after transforming the components; you should also transform the coordinate variables.

26

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

THE SPHERICAL COORDINATE SYSTEM

z

r ,  ,  are

coordinate variables.

P x  1, y  2 , z  3or



P r  14 ,   35.69o ,   63.4 o

z 3 

 is

measured from x-axis toward y-axis, and  is measured from the zaxis toward the xy plane.



r 

x 1

y 2 

y

x

Chapter One

A genral point is loacated by its coordinate variables r ,  ,  , or as the intersection of three mutually perpendicular surfaces.

27

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

z   1

P 1 , 1 , z 1 

surface (cone)

r  r1

ˆa r

surface (sphere)

ˆa

ˆa

  1 Surface (plane)

y

x

increasing variables and are perpendicular  to the surface at which the coordinate variable is constant.

Chapter One

1) Sphere of radius r  r1 , centered at the origin. 2) Semi-infinite plane of constant angle   1 with it’s axis aligned with z-axis. 3) Right angular cone with its apex centered at the origin, and it axis aligned with z-axis, and a cone angle   1 . The three unit vectors ˆar , ˆa , and ˆa are in the direction of

28

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

z

P r1 , 1 , 1  ˆa r ˆa

1

1

x

ˆa

y

Chapter One

r1

29

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

y

z

ˆa

ˆa r

z

r

ˆa





z

x

x

xy plane



ˆa z



y

Note that in spherical coordinates, unit vectors are functions of coordinate variables. ˆa , ˆa and ˆar are functions of  and  . y

z

aˆ  2

ˆa

aˆ r1

2

r

1

r 

aˆ  1

xy plane

ˆa z



y



z

x

x

Chapter One

aˆ r 2

30

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

y ˆa  2

ˆa 2

ˆa1

2

2

z

ˆa 1

ˆa y

ˆa x

1

2

1

y

ˆa y

x

2

z

ˆa x

1

1

x

The sphyrical coordinate system is Right Handed:

aˆ r  aˆ   aˆ  .

Chapter One

Increasing each coordinate variable by a differential amount dr , d , and d , one obtains:

31

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Note that r is length, but and  are angles which requires a metric coefficient to convert them to lengths.

arc length 

d

r metric coefficient

arc length  rsin  

d

metric coefficient

Differential volume: dv  r 2 sin  dr d d Differential Surfaces: Six surfaces with differential areas shown in the figure. (Try itttttttttttt!)

Transformations between Spherical and Cylindrical Coordinates z

From spherical to cart: x  r sin cos 

z  z1

y  r sin sin 

1

z  r cos 

From cart. To spherical: r  x2  y2  z 2 ; ( √

 y x

;

x  x1

1

r1

1

y  y1 y

) x

Chapter One

  tan 1  

32

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

Consider a vector in rectangular coordinates;

E  Ex aˆ x  E yaˆ y  Ez aˆ z Wishing to write E in spherical coordinates:

E  Er aˆ r  E aˆ   E aˆ  From the dot product:

Er  E  aˆ r

E  E  aˆ 

E  E  aˆ 

Er  Ex aˆ x  E y aˆ y  Ez aˆ z   aˆ r

 E x aˆ x  aˆ r  E y aˆ y  aˆ r  E z aˆ z  aˆ r     ? ? ? E  Ex aˆ x  E yaˆ y  Ezaˆ z  aˆ 

 Ex aˆ x  aˆ   E y aˆ y  aˆ   Ez aˆ z  aˆ     ? ? ? E  Ex aˆ x  E y aˆ y  Ez aˆ z   aˆ 

Chapter One

 E x aˆ x  aˆ   E y aˆ y  aˆ   E z aˆ z  aˆ       ? ? ?

33

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012



z

z

ˆa z

r



aˆ r

90 0   aˆ 

 aˆ 



xy plane

From figure

aˆ z  aˆ r  aˆ z aˆ r cos   cos 









aˆ   aˆ r  aˆ  aˆ r cos 90o    sin 

aˆ z  aˆ   aˆ z aˆ  cos 90o     sin  And the rest is left to you as an exercise! So:

Er  Ex sin  cos   E y sin  sin   Ez cos 

Chapter One

Note that, after transforming the components; you should also transform the coordinate variables.

34

Chapter One

Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012

35