INSIGHTS INTO MID-‐OCEAN RIDGE MAGMA CHAMBERS FROM VOLCANIC

Download Mid-‐Ocean Ridge Magma Chambers. Hekinian et al. (1976). 70's-‐80's view of MOR magma chambers. Reservoir about as wide as the Mid-...

0 downloads 499 Views 26MB Size
Insights  into  mid-­‐ocean  ridge  magma  chambers  from  volcanic   erup7ons   • 

Composi7onal  varia7ons  in  sub-­‐axial  magma  reservoirs  and  the  processes   that  are  responsible  

• 

 The  geometry  of  magma7c  plumbing  beneath  and  within  magma  reservoirs  

• 

 How  reservoirs  are  tapped  during  erup7ons  

Mid-­‐Ocean  Ridge  Magma  Chambers   70’s-­‐80’s  view  of  MOR  magma   chambers   Reservoir  about  as  wide  as  the  Mid-­‐ Atlan7c  Ridge  inner  riM  valley   Different  parts  of  the  reservoir   tapped  during  different  erup7ons  

Hekinian  et  al.    (1976)  

Seismic  imaging  and  petrological  study  required  a  revision  to  size,  longevity  and   internal  cons7tu7on  of  MOR  magma  chambers   fast-­‐spreading  ridge  

slow-­‐spreading  ridge  

IntermiUent,  deeper  magma  chamber,  mostly   Quasi-­‐steady  state  shallow  magma  chamber   with  thin,  erup7ble  melt  lens  overlying  a  much   smaller,  deeper  or  less  persistent  than  seismic   resolu7on.    Less  erup7ble  magma   thicker  region  of  par7ally  crystalline  mush  

Most  mid-­‐Ocean  ridge  magma  chambers  are  mostly  small  and   mostly  mush  (lots  of  crystals),  most  of  the  7me.   Sinton  &  Detrick,  1992  

Along-­‐axis;  fast-­‐spreading  ridge   Along-­‐axis  

Sinton  &  Detrick,  1992  

How  much  mixing  along  axis?   What  is  geometry  of  injec7on  (recharge)  to  the  shallow  crust?   How  are  magma  reservoirs  tapped  during  erup7ons?    -­‐over  what   along-­‐axis  distances?  

Mid-­‐Ocean  Ridge  Erup7ons  in  North  Iceland   1725-­‐1729  Mývatn  Fires   near  Krafla  caldera  

1725-­‐1729  Mývatn  lava   Late  1975  a  new   earthquake  swarm   caused  riMing  extending   ~20  km  south  and  60   km  north  of  the  caldera    

Followed  by  a  brief  (20   min)  outbreak  of  lava   inside  Krafla  caldera  

Dec.  1975  

April  1977  

Sept.  1977  

July  1980  

Oct.  1980  

Jan.  1981  

Nov.  1981  

Sept.  1984  

Krafla  Lava  

20 events; 9 eruptions Total erupted volume ~0.25 km2 from reservoir ~2.5 km below surface Erupted volume increased in each successive eruption; last one by far the largest Erupted lava volume ~1/4 that determined to have moved through the magma system based on deformation modeling (~1 km3)

Krafla  and  Mývatn  are  the  latest  two  of  five  major  riVing   events  in  the  last  2800  years   Krafla  Fires:  1975-­‐1984   Mývatn  Fires:  1725-­‐1729   Dalseldar  :  ~900  A.D.   Hólseldar:  ~2300-­‐2500  yrs.  B.P.   Hverfell  :  ~2600-­‐2800  yrs  B.P.  

Lúdunt,  NámaGall,  Kröfluháls   7500  -­‐11,000  yrs  B.P.  

HverGall  Period  

Lüdent  Period  

ErupZons  grouped  into  episodes   Episodes  grouped  into  periods  

Lessons  from  Krafla   1.  RiVing  events  and  associated  erupZons  in  Iceland  are  episodic   2.  Major  riVing  episodes  comprise  several  events,  some  of  which  have   associated  erupZons.       3.  ErupZons  can  re-­‐occupy  vents  from  earlier  events  and  episodes   4.  Lava  can  flow  back  into  pre-­‐exisZng  fissures  

Contemporaneous sampling during Krafla eruptions

March,  1980  

October,  1980  

Sample maps and chemical data from Karl Grönvold and Sæmundur Halldórsson November,  1981  

September,  1984  

More  Lessons  from  Krafla   1.  The combined episode flow field can be readily distinguished from the products of earlier episodes (flow fields); individual lava flows are not easily discernible once the episode is completed. 2.  Two chemically distinct magma reservoirs tapped in single eruptions Caldera lava basically the same as the Mývatn lava erupted 250 yrs earlier

Krafla  lava   1975-­‐1984   Krafla     caldera   Mývatn  lava   1725-­‐1729   1977 Photo by S. Thorarinsson

Afar  RiMing:  2005  -­‐  present  also  is  episodic  

Seismo-­‐acousZcally  detected   erupZon  on  the  Gorda  Ridge   -­‐  1996  

Chadwick  et  al.,  1998  

1996  North  Gorda  Ridge  

TiO2  wt  %

1.40

Chemically  variable   lava  erup7on  

1.30

1.20

1.10 61

63

65

Mg  # 65.0

Systema7c  varia7on   with  sample   (erup7on?)  loca7on  

Mg  #

64.0

63.0

62.0

42.675

42.680

42.685

Degrees  N.  Latitude

42.690

1993  Co-­‐Axial  

TiO2  wt  %

1.75

1.70

1.65

1.60 47

48

49

50

Mg  # 50.0

49.5

Mg  #

49.0

48.5

48.0

47.5 46.51

46.52

46.53

Degrees  N.  Latitude

46.54

46.55

Is  verZcal  diking  necessary  to  explain  the  chemical  variaZons  along  axis?   What  is  the  relaZonship  between  magma  transport  and  seismic  propagaZon?   • 

Seismic  propaga7on  indicates  migra7on  of  stress  release,  which  may  or  may   not  track  dike  propaga7on  

• 

Along-­‐axis  migra7on  of  epicenters  is  expected  for  “unzipping”  during  ver7cal   rise  of  inclined  dikes  

• 

Correla7ons  between  seismic  migra7on  and  deforma7on  are  consistent  with   lateral  dike  migra7on  

Migra7on  rates  for  various  seafloor   seismic  “events”  in  the  NE  Pacific  and   Krafla    [aMer  Dziak  et  al.,  Geology,  2007]  

18$ 31' S 2650

Southern  EPR  

3348

265 0

Rela7vely  “young”   lava  fills  the  floor  of  a   narrow  axial  graben   in  the  S.  Hump  

260

18$ 32'

2650

26 00

2600

265

0

0

280 0

0 275

2650

2700

2650

18$ 33' ND-11

18$ 34'

3347 18$ 35' 113$ 25.5’

113$ 25'

113$ 24.5’ W

-­‐ First  discovered  in   1993  (ND-­‐11)   -­‐   later  revisited  in   1999  (Alvin  dives   3347  and  3348)  

2650

18$ 31' S

2.4

3348

But  the  northern  and   southern  parts  of  the  flow   field  have  very  different   composi7ons,  which  cannot   be  related  by  frac7ona7on  

Alvin  3347 ND  11

265 0

TiO 2  wt  %

2.2

260

18$ 32'

2.0 1.8

Alvin  3348

0

1.4 6.0

26 00

2600

6.5

7.0

7.5

8.0

7.5

8.0

MgO  wt  %

2650

265

0

1.6

18$ 33' ND-11

Na2O  wt  %

280 0

0 275

2650

2700

2650

3.2

3.1

fract

iona

tion

3.0

18$ 34'

6.0

6.5

7.0

MgO  wt  %

3347 18$ 35' 113$ 25.5’

113$ 25'

113$ 24.5’ W

South  Hump,  EPR  18.5°  S 18°31'S 2650

And  the  two  different  lava  composi7ons  differ  in  age  by   ~150  yrs  

265

0

3348

00 26

00

28

0

2 75

2700

2650

2650

ND-­11

2650

18°33'S

260 0

265

0

2600

18°32'S

18°34'S

Lava  of   1865  ±  50  AD Early  17th   C.  lava

Magne7c  paleointensity  data  of  Bowles  (2006)   3347 18°35'S 113°25.5’W

113°25'W

113°24.5’W

Depth  (m)

N 2600

Samples  from graben  floor

3000

Layer  2A

S

South  Hump  Lava   3348

ND-­11

3347

“Boundary”  between  the   two  lava  flows  coincides   with  discon7nuity  in   underlying  AMC  reflector   and  layer  2A  structure  

3400 3800

AMC

4200 18°30’

18°31’

18°32’

18°33’

18°34’

18°35’

Degrees  S.  Latitude

The  rela7onship  between  lava   composi7on  and  the  AMC   discon7nuity  requires  (?)  near-­‐ ver7cal  (<1  km  lateral)  transport  of   lava  from  the  AMC  to  the  surface,  at   least  for  the  younger  lava  erup7on  

33

47 18

2A

  ’ er °33 Lay 18

48

33



°32

18

2600  m

’ °31 18 C

3000 3400 3800 4200

C

AM

AM

C

AM



°34

1 -­1 ND

9°56'  

Dated  Lavas  of  the  2005-­6   Eruption

0

1

2  km

Composi7onally  heterogeneous  EPR  erup7ons   near  9°50’  N   1.60

9°54'  

1991-­2 2005-­6

1.55

northern   area

TiO2  wt  %

1.50

9°52'  

1.45 1.40 1.35

9°50'  

Bullseye   area

1.30 1.25

56

58

59

60

61

62

63

Mg  #

9°48'  

southern   area

9°46'  

57

-­104°18'  

-­104°16'  

Chemical  data  from  Rubin  et  al.  (2001)  and  Goss  et  al.  (2009)  

2005-­‐6  flow  field  map  from  Soule  et  al.  (2007)  

9°56'  

Dated  Lavas  of  the  2005-­6   Eruption

0

1

2  km

9°54'  

northern   area

9°52'  

Note:     •  Significant  along-­‐axis  composi7onal   varia7on,  and   •  change  in  Mg#  across  the  7ny  9°52.5’N  axial   discon7nuity  for  both  erup7ons  

9°52.5'N  third-­order discontinuity 63

9°50'  

Bullseye   area

62 61

Mg  #

60 59

9°48'  

southern   area

58 57

9°46'  

56 9°46'

-­104°18'  

-­104°16'  

9°48'

9°50'

9°52'

Degrees  N.  Latitude

9°54'

9°56'

EPR  near  17°30’  S   4  (maybe  5)  erup7ve  episodes  in  last   ~500  yrs   -­‐  Last  one  in  late  80’s  to  early  90’s  

17$ 20’ S

17$ 30’

17$ 40’

17$ 50’

18$ 00’

18$ 10’

18$ 20’

18$ 30’

18$ 40’

18$ 50’ 113$ 40’

113$ 30’

113$ 20’

113$ 10’ W

Bergmanis  et  al.,  2007  

Lo-­‐T,  diffuse  vents   Hi-­‐T  vents  

For  last  two  erup7ons:   •  Center  of  erup7ve   ac7vity  where  the   magma  lens  is  shallow   and  rela7vely  low   temperature;  not  at   the  hoUest  part  of  the   magma  lens   •  MgO  and  magma   temperature  generally   correlate  with  AMC   depth  

AMer  Bergmanis  et  al.,  2007  

Step  in  MgO  content  south  of  the  long-­‐lived   small  axial  discon7nuity  at  17°29’S.   South  of  17°29’S,  erupted  volume  and   hydrothermal  ven7ng  are  less,  and  the  AMC  is   deeper  and  narrower.   -­‐ This  rela7onship  strongly  suggests  ver7cal   diking  from  a  magma  reservoir  characterized  by   long-­‐lived  chemical  heterogeneity  

AMer  Rubin  et  al.,  2010  

Chemical variations within the two youngest lavas are dominated by mixing

MgO  wt  %

9

8 ng

- a low-MgO, low-206Pb/204Pb magma residing in the magma reservoir, and

ixi

M

7

-  magma with high MgO and 206Pb/ 204Pb that was injected within 20 years prior to 1993 (collection date).

2.7

2.10

ng

2.6

2.00

M

ix i

Th/U

2.8

2.5

1.90 1.80

secular  equilibrium

1.0

old  magma

20  to  40  yrs

ng

18.7

1.70 1.60 1.50 1.40 1.30

M ixi

0.9

TiO2  wt  %

(210Pb/226Ra)

2.4

young  magma

18.8 206Pb/204Pb

1.20 1.10 50

52

54

56

58

Mg  #

60

62

64

66

See-­‐saw  paUern  of  isotopic  varia7on  along  axis  

-­‐ Varia7on  in  amount  of  newly  arrived,  high  206Pb/204Pb  magma  that  is  progressively   mixed  with  resident  low-­‐206Pb/204Pb  magma  in  the  shallow  melt  lens.   -­‐   in  this  interpreta7on,  the  high  206Pb/204Pb  regions  represent  loca7ons   (concentra7ons)  of  recent  magma  injec7on  to  the  shallow  lens  

MgO  wt  %

9

8 ng

ixi

M

7

2.7 ix in g

2.6

M

Th/U

2.8

2.5

(210Pb/226Ra)

2.4 secular  equilibrium

1.0

old  magma

20  to  40  yrs M

ixi

0.9 18.7

ng

young  magma

18.8 206Pb/204Pb

Lava  flow  fields  (from  isolated  erup7ve  episodes)  can  be   chemically  heterogeneous.    -­‐  Some  are;  some  aren’t  

-­‐   Where  present,  heterogeneity  unlikely  to  be  produced  during   erup7ons;  rather  it  likely  reflects  varia7on  in  underlying  magma   reservoirs.   -­‐   suggests  limited  mixing  in  subaxial  magma  reservoirs,  either   because  of  their  shape  (road-­‐kill-­‐cigar-­‐shaped  melt  lens),   inhibited  mixing  in  crystal-­‐rich  mush  zones,  or  because   frequency  of  recharge  exceeds  the  7me  scales  for  mixing  

Evidence  for  Ver7cal  Diking  during  Mid-­‐Ocean  Ridge  Erup7ons   1.  Preserva7on  of  crustal  reservoir  proper7es  in  surface  lava  flow  fields   Requires  ver7cal  rise  of  magma  to  the  surface  with  limited  along-­‐axis  mixing,   either  within  dikes  or  in  surface  lava  aMer  erup7on   Examples:  EPR  17.5°S,  S.  Hump   2.  Correla7ons  of  along-­‐axis  chemical  varia7ons  with  ridge  axial  discon7nui7es   or  other  structures   Axial  discon7nui7es  reflect  deeper  level  varia7ons  in  magma  chamber  or   thermal  structure   Examples:  EPR  17.5°S;  9°50’N;  Krafla   3.  Along-­‐axis  varia7ons  in  magma  temperature  and  chemistry   Most  likely  correspond  to  similar  gradients  in  reservoir  chemistry  and   temperature   Examples:  EPR  17.5°S;  9°52’N;  N.  Gorda,  Co-­‐Axial     Erup7ons  represent  only  one  (last)  part  of  a  riMing  event.    Considerable  lateral  migra7on   possible  prior  to  erup7on   Flow  fields  without  chemical  heterogeneity  provide  liUle  informa7on  about  nature  of   subaxial  reservoirs  or  magma  transport  processes