Chapter 6
Quadratic Equations
Chapter 6 Get Ready Chapter 6 Get Ready
Question 1
Page 262
a)
b)
c)
d)
MHR • Principles of Mathematics 10 Solutions
1
Chapter 6 Get Ready
Question 2
Page 262
a)
b)
c)
d)
6
2 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Get Ready
Question 3
Page 262
a) The square roots of 100 are 10 and –10.
b) The square roots of 36 are 6 and –6.
c) The square roots of 75 are 8.7 and –8.7.
d) The square root of –9 is not a real number.
Chapter 6 Get Ready
Question 4
Page 262 b) ± 32 + 42 = ± 9 + 16
a) ± 25 − 16 = ± 9
= ±3
= ± 25 = ±5 d) ± 82 − 3 ( 5 ) = ± 64 − 15
c) ± 62 − 11 = ± 36 − 11
= ± 25 = ±5
= ± 49 = ±7
Chapter 6 Get Ready
Question 5
(
a) 2 x 2 + 10 x + 12 = 2 x 2 + 5 x + 6
)
Page 262 b) x 2 + 16 x + 28 = ( x + 14 )( x + 2 )
= 2 ( x + 3)( x + 2 )
c) x 2 − 16 x + 63 = ( x − 9 )( x − 7 )
(
d) 4 x 2 − 36 = 4 x 2 − 9
)
= 4 ( x − 3)( x + 3)
e) 81x 2 − 49 = ( 9 x − 7 )( 9 x + 7 )
(
f) 3 x 2 − 6 x − 24 = 3 x 2 − 2 x − 8
)
= 3 ( x − 4 )( x + 2 )
g) 16 x 2 − 8 x + 1 = ( 4 x − 1)
2
h) 12 x 2 + 19 x + 4 = 12 x 2 + 16 x + 3 x + 4
(
)
= 12 x 2 + 16 x + ( 3 x + 4 ) = 4 x ( 3x + 4 ) + ( 3x + 4 ) = ( 3 x + 4 )( 4 x + 1)
MHR • Principles of Mathematics 10 Solutions
3
Chapter 6 Get Ready
Question 6
Page 262
(
a) x 2 − 4 x − 32 = ( x − 8 )( x + 4 )
b) 2 x 2 + 12 x + 18 = 2 x 2 + 6 x + 9
= 2 ( x + 3)
2
d) 144 x 2 − 312 x + 169 = (12 x − 13)
c) 64 x 2 − 1 = ( 8 x − 1)( 8 x + 1) e) 49 x 2 + 70 x + 25 = ( 7 x + 5 )
)
2
2
f) 2 x 2 − 9 x − 5 = 2 x 2 − 10 x + x − 5
(
)
= 2 x 2 − 10 x + ( x − 5 ) = 2 x ( x − 5) + ( x − 5) = ( x − 5 )( 2 x + 1)
(
h) 6 x 2 + 21x + 9 = 3 2 x 2 + 7 x + 3
g) 9 x 2 − 18 x + 8 = 9 x 2 − 12 x − 6 x + 8 = ( 9 x − 12 x ) + ( −6 x + 8 ) 2
)
= 3 ⎡⎣ 2 x 2 + 6 x + x + 3⎤⎦
= 3x ( 3x − 4 ) − 2 ( 3x − 4 )
(
)
= 3 ⎡⎣ 2 x 2 + 6 x + ( x + 3) ⎤⎦
= ( 3 x − 4 )( 3 x − 2 )
= 3 ⎡⎣ 2 x ( x + 3) + ( x + 3) ⎤⎦ = 3 ( x + 3)( 2 x + 1)
Chapter 6 Get Ready
Question 7
Page 262
a) The first number is x. The second number is
1 x. 2
b) The area of the original garden is A. The area of the new garden is 3A. c) The number of price reductions is n. The new price, in dollars, is 12 – n. d) The first number is x. The second number is x2 + (x + 1)2. e) The width is w. The length is 2w – 3.
Chapter 6 Get Ready
Question 8
Page 262
a) x + y = 100
b) 2(l + w) = 50
c) P = 8w
d) xy = ( 2 x )
= 4 x2 e) x + y + 3 = 12
4 MHR • Principles of Mathematics 10 Solutions
2
Chapter 6 Section 1:
Maxima and Minima
Chapter 6 Section 1
Question 1
Page 270
a) y = x 2 + 2 x + 5
= ( x + 1) + 4 2
MHR • Principles of Mathematics 10 Solutions
5
b) y = x 2 + 4 x + 7
= ( x + 2) + 3 2
6 MHR • Principles of Mathematics 10 Solutions
c) y = x 2 + 6 x + 3
= ( x + 3) − 6 2
MHR • Principles of Mathematics 10 Solutions
7
Chapter 6 Section 1
Question 2
a) c = 9; x 2 + 6 x + 9 = ( x + 3)
b) c = 49; x 2 + 14 x + 49 = ( x + 7 )
2
c) c = 36; x 2 − 12 x + 36 = ( x − 6 ) e) c = 1; x 2 + 2 x + 1 = ( x + 1)
Page 270
2
d) c = 25; x 2 − 10 x + 25 = ( x − 5)
Question 3
a) y = x 2 + 6 x − 1
Page 270 b) y = x 2 + 2 x + 7
= ( x2 + 6x ) − 1
= ( x2 + 2x ) + 7
= ( x 2 + 6 x + 32 ) − 32 − 1
= ( x 2 + 2 x + 12 ) − 12 + 7
= ( x 2 + 6 x + 32 − 32 ) − 1
= ( x 2 + 2 x + 12 − 12 ) + 7
= ( x + 3) − 10
= ( x + 1) + 6
c) y = x 2 + 10 x + 20
d) y = x 2 + 2 x − 1
2
2
= ( x 2 + 10 x ) + 20
= ( x2 + 2x ) − 1
= ( x 2 + 10 x + 52 ) − 52 + 20
= ( x 2 + 2 x + 12 ) − 12 − 1
= ( x 2 + 10 x + 52 − 52 ) + 20
= ( x 2 + 2 x + 12 − 12 ) − 1
= ( x + 5) − 5
= ( x + 1) − 2
2
2
e) y = x 2 − 6 x − 4
f) y = x 2 − 8 x − 2
= ( x2 − 6x ) − 4
= ( x2 − 8x ) − 2
)
= x 2 − 6 x + ( −3) − ( −3) − 4 2
2
2
)
− 6 x + ( −3) − ( −3) − 4 2
2
= ( x − 3) − 13
( = (x
g) y = x 2 − 12 x + 8
)
= x 2 − 12 x + ( −6 ) − ( −6 ) + 8 2
2
2
2
2
)
− 12 x + ( −6 ) − ( −6 ) + 8 2
2
= ( x − 6 ) − 28 2
8 MHR • Principles of Mathematics 10 Solutions
2
)
− 8 x + ( −4 ) − ( −4 ) − 2 2
2
= ( x 2 − 12 x ) + 8
)
= x 2 − 8 x + ( −4 ) − ( −4 ) − 2
= ( x − 4 ) − 18
2
( = (x
2
f) c = 1600; x 2 − 80 x + 1600 = ( x − 40 )
2
Chapter 6 Section 1
( = (x
2
2
2
Chapter 6 Section 1
Question 4
a) y = x 2 + 6 x + 2
Page 270 b) y = x 2 + 12 x + 30
= ( x2 + 6x ) + 2
= ( x 2 + 12 x ) + 30
= ( x 2 + 6 x + 32 ) − 32 + 2
= ( x 2 + 12 x + 62 ) − 62 + 30
= ( x 2 + 6 x + 32 − 32 ) + 2
= ( x 2 + 12 x + 62 − 62 ) + 30 = ( x + 6) − 6
= ( x + 3) − 7 2
2
The vertex is (–3, –7).
The vertex is (–6, –6).
c) y = x 2 − 8 x + 13
d) y = x 2 − 6 x + 17
= ( x 2 − 8 x ) + 13
( = (x
= ( x 2 − 6 x ) + 17
)
( = (x
= x 2 − 8 x + ( −4 ) − ( −4 ) + 13 2
2
2
)
− 8 x + ( −4 ) − ( −4 ) + 13 2
2
= ( x − 4) − 3
2
2
2
)
− 6 x + ( −3) − ( −3) + 17 2
2
= ( x − 3) + 8
2
2
The vertex is (4, –3). Chapter 6 Section 1
)
= x 2 − 6 x + ( −3) − ( −3) + 17
The vertex is (3, 8). Question 5
Page 270
a) y = ( x − 5) + 1 2
The vertex is (5, 1). Graph D b) y = ( x − 1) + 4 2
The vertex is (1, 4). Graph A c) y = ( x + 1) + 4 2
The vertex is (–1, 4). Graph B d) y = ( x + 5) − 1 2
The vertex is (–5, –1). Graph C
MHR • Principles of Mathematics 10 Solutions
9
Chapter 6 Section 1
Question 6
Page 270
a) y = x 2 + 10 x + 20
= ( x 2 + 10 x ) + 20
= ( x 2 + 10 x + 52 − 52 ) + 20 = ( x 2 + 10 x + 52 ) − 52 + 20 = ( x + 5) − 5 2
The vertex is (–5, –5).
b) y = x 2 − 16 x + 60 = ( x 2 − 16 x ) + 60
( = (x
)
= x 2 − 16 x + ( −8 ) − ( −8 ) + 60 2
2
2
)
− 16 x + ( −8 ) − ( −8 ) + 60 2
2
= ( x − 8) − 4 2
The vertex is (8, –4).
10 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 1
Question 7
a) y = − x 2 + 80 x − 100
b) y = − x 2 − 6 x + 4
= − ( x 2 − 80 x ) − 100
(
Page 270
= − ( x2 + 6x ) + 4
)
= − x 2 − 80 x + ( −40 ) − ( −40 ) − 100 2
2
= − ( x 2 − 80 x + 1600 ) − ( −1)( −40 ) − 100 2
= − ( x 2 + 6 x + 32 − 32 ) + 4
= − ( x 2 + 6 x + 9 ) − ( −1) ( 32 ) + 4 = − ( x + 3) + 13 2
= − ( x − 40 ) + 1500 2
d) y = 2 x 2 − 16 x + 15
c) y = 3x 2 + 90 x + 50
= 2 ( x 2 − 8 x ) + 15
= 3 ( x 2 + 30 x ) + 50
= 3 ( x 2 + 30 x + 152 − 152 ) + 50
= 3 ( x + 30 x + 225) − 3 (15 ) + 50 2
2
= 3 ( x + 15) − 625 2
(
)
= 2 x 2 − 8 x + ( −4 ) − ( −4 ) + 15 2
2
= 2 ( x 2 − 8 x + 16 ) − 2 ( −4 ) + 15 2
= 2 ( x − 4 ) − 17 2
e) y = −7 x 2 + 14 x − 3
= −7 ( x 2 − 2 x ) − 3
(
)
= −7 x 2 − 2 x + ( −1) − ( −1) − 3 2
2
= −7 ( x 2 − 2 x + 1) − ( −7 )( −1) − 3 2
= −7 ( x − 1) + 4 2
MHR • Principles of Mathematics 10 Solutions
11
Chapter 6 Section 1
Question 8
b) y = − x 2 + 14 x − 50
a) y = − x 2 − 10 x − 9
= − ( x 2 − 14 x ) − 50
= − ( x 2 + 10 x ) − 9
(
= − ( x 2 + 10 x + 52 − 52 ) − 9
)
= − x 2 − 14 x + ( −7 ) − ( −7 ) − 50
= − ( x + 10 x + 25) − ( −1) ( 5 ) − 9 2
Page 271
2
2
= − ( x 2 − 14 x + 49 ) − ( −1)( −7 ) − 50
2
2
= − ( x + 5) + 16 2
= − ( x − 7) − 1 2
The maximum point is at (–5, 16).
The maximum point is at (7, –1).
c) y = 2 x 2 + 120 x + 75
d) y = 3x 2 − 24 x + 10
(
= 2 ( x 2 + 60 x ) + 75
)
= 3 x 2 − 8 x + 10
= 2 ( x 2 + 60 x + 302 − 302 ) + 75
(
)
= 3 x 2 − 8 x + ( −4 ) − ( −4 ) + 10 2
2
= 2 ( x + 60 x + 900 ) − 2 ( 30 ) + 75
= 3 x 2 − 8 x + 16 − 3 ( −4 ) + 10
= 2 ( x + 30 ) − 1725
= 3 ( x − 4 ) − 38
2
2
2
(
)
2
2
The minimum point is at (–30, –1725). The minimum point is at (4, –38). e) y = −5 x 2 − 200 x − 120
= −5 ( x 2 + 40 x ) − 120
= −5 ( x 2 + 40 x + 202 − 202 ) − 120
= −5 ( x 2 + 40 x + 400 ) − ( −5) ( 202 ) − 120 = −5 ( x + 20 ) + 1880 2
The maximum point is at (–20, 1880).
12 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 1
Question 9
Page 271
a) The minimum point is at (–3, –10).
b) The minimum point is at (3.8, 3.5).
c) The maximum point is at (1.3, –2.3).
d) The minimum point is at (0.1, 0.5).
e) The maximum point is at (0.8, 23.3).
f) The minimum point is at (–0.1, 12.9).
MHR • Principles of Mathematics 10 Solutions
13
Chapter 6 Section 1
Question 10
Page 271
a) y = − x 2 − 2 x − 6
= − ( x2 + 2 x ) − 6
= − ( x 2 + 2 x + 12 − 12 ) − 6
= − ( x 2 + 2 x + 25) − ( −1) (12 ) − 6 = − ( x + 1) − 5 2
The vertex is (–1, –5). Other points will vary. Possible other points are (–2, –6) and (0, –6). b) y = 4 x 2 + 24 x + 41
= 4 ( x 2 + 6 x ) + 41
= 4 ( x 2 + 6 x + 32 − 32 ) + 41
= 4 ( x 2 + 6 x + 9 ) − 4 ( 32 ) + 41 = 4 ( x + 3) + 5 2
The vertex is (–3, 5). Other points will vary. Possible other points are (–2, 9) and (–4, 9). c) y = 5 x 2 − 30 x + 41
= 5 ( x 2 − 6 x ) + 41
(
)
= 5 x 2 − 6 x + ( −3) − ( −3) + 41 2
2
= 5 ( x 2 − 6 x + 9 ) − 5 ( −3) + 41 2
= 5 ( x − 3) − 4 2
The vertex is (3, –4). Other points will vary. Possible other points are (2, 1) and (4, 1). d) y = −3x 2 + 12 x − 13
= −3 ( x 2 − 4 x ) − 13
(
)
= −3 x 2 − 4 x + ( −2 ) − ( −2 ) − 13 2
2
= −3 ( x 2 − 4 x + 4 ) − ( −3)( −2 ) − 13 2
= −3 ( x − 2 ) − 1 2
The vertex is (2, –1). Other points will vary. Possible other points are (1, –4) and (3, –4).
14 MHR • Principles of Mathematics 10 Solutions
e) y = 2 x 2 + 8 x + 3
= 2 ( x2 + 4 x ) + 3
= 2 ( x 2 + 4 x + 22 − 22 ) + 3
= 2 ( x 2 + 4 x + 4 ) − 2 ( 22 ) + 3 = 2 ( x + 2) − 5 2
The vertex is (–2, –5). Other points will vary. Possible other points are (0, 3) and (–3, –3).
Chapter 6 Section 1
Question 11
Page 271
a) y = −2 x 2 − 3x + 7
= −2 ( x 2 + 1.5 x ) + 7
= −2 ( x 2 + 1.5 x + 0.752 − 0.752 ) + 7
= −2 ( x 2 + 1.5 x + 0.752 ) − ( −2 ) ( 0.752 ) + 7 = −2 ( x + 0.75) + 8.125 2
The vertex is (–0.75, 8.125). Other points will vary. Possible other points are (0, 7) and (–1, 8). b) y = 3x 2 − 9 x + 11
= 3 ( x 2 − 3x ) + 11
= 3 ( x 2 − 3x + 1.52 − 1.52 ) + 11
= 3 ( x 2 − 3x + 1.52 ) − 3 (1.52 ) + 11 = 3 ( x − 1.5) + 4.25 2
The vertex is (1.5, 4.25). Other points will vary. Possible other points are (1, 5) and (2, 5). c) y = − x 2 + 8 x − 10
= − ( x 2 − 8 x ) − 10
(
)
= − x 2 − 8 x + ( −4 ) − ( −4 ) − 10 2
2
= − ( x 2 − 8 x + 16 ) − ( −1)( −4 ) − 10 2
= − ( x − 4) + 6 2
The vertex is (4, 6). Other points will vary. Possible other points are (3, 5) and (6, 2).
MHR • Principles of Mathematics 10 Solutions
15
d) y = 4 x 2 − 16 x + 11
= 4 ( x 2 − 4 x ) + 11
(
)
= 4 x 2 − 4 x + ( −2 ) − ( −2 ) + 11 2
2
= 4 ( x 2 − 4 x + 4 ) − 4 ( −2 ) + 11 2
= 4 ( x − 2) − 5 2
The vertex is (2, –5). Other points will vary. Possible other points are (1, –1) and (3, –1). e) y = −5 x 2 − 30 x − 48
= −5 ( x 2 + 6 x ) − 48
= −5 ( x 2 + 6 x + 32 − 32 ) − 48
= −5 ( x 2 + 6 x + 32 ) − ( −5) ( 32 ) − 48 = −5 ( x + 3) − 3 2
The vertex is (–3, –3). Other points will vary. Possible other points are (–4, –8) and (–2, –8).
Chapter 6 Section 1
Question 12
Page 271
y = − x2 + 4 x + 1 = − ( x2 − 4 x ) + 1
(
)
= − x 2 − 4 x + ( −2 ) − ( −2 ) + 1 2
2
= − ( x 2 − 4 x + 4 ) − ( −1)( −2 ) + 1 2
= − ( x − 2) + 5 2
The maximum height of 5 m occurs at a horizontal distance of 2 m.
Chapter 6 Section 1
Question 13
Page 271
For h = −4.9t 2 + 10t + 1 , the maximum height of 6.1 m occurs at time t = 1.0 s.
For h = −0.0163x 2 + 0.577 x + 1 , the maximum height of 6.1 m occurs at a horizontal distance of x = 17.7 m.
16 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 1
Question 14
Page 271
y = − x2 + 2 x + 3 = − ( x2 − 2 x ) + 3
(
)
= − x 2 − 2 x + ( −1) − ( −1) + 3 2
2
= − ( x 2 − 2 x + 1) − ( −1)( −1) + 3 2
= − ( x − 1) + 4 2
The diver's maximum height is 4 m. Chapter 6 Section 1
Question 15
Page 271
C = 2t 2 − 84t + 1025 = 2 ( t 2 − 42t ) + 1025
= 2 ( t 2 − 42t + 212 − 212 ) + 1025
= 2 ( t 2 − 42t + 212 ) − 2 ( 212 ) + 1025 = 2 ( t − 21) + 143 2
The minimum cost of running the machine is $143 at a running time of 21 h. Chapter 6 Section 1
Question 16
Page 272
a) The price of a garden ornament is 4 – 0.5x. The number of garden ornaments sold is 120 + 20x. b) R = ( 4 − 0.5 x )(120 + 20 x ) c) R = ( 4 − 0.5 x )(120 + 20 x )
= −10 x 2 + 20 x + 480 = −10 ( x 2 − 2 x ) + 480
(
)
= −10 x 2 − 2 x + ( −1) − ( −1) + 480 2
2
= −10 ( x 2 − 2 x + 1) − ( −10 )( −1) + 480 2
= −10 ( x − 1) + 490 2
To maximize revenue at $490, the artisan should charge $3.50 per ornament. d)
Both forms of the equation produce the same graph.
MHR • Principles of Mathematics 10 Solutions
17
Chapter 6 Section 1
Question 17
a) y = 1.5 x 2 + 6 x − 7
Page 272 b) y = −0.1x 2 − 2 x + 1
= 1.5 ( x 2 + 4 x ) − 7
= −0.1( x 2 + 20 x ) + 1
= 1.5 ( x 2 + 4 x + 4 ) − 1.5 ( 22 ) − 7
= −0.1( x 2 + 20 x + 102 ) − ( −0.1) (102 ) + 1
= 1.5 ( x + 2 ) − 13
= −0.1( x + 10 ) + 11
= 1.5 ( x 2 + 4 x + 22 − 22 ) − 7
= −0.1( x 2 + 20 x + 102 − 102 ) + 1
2
2
The minimum point is at (–2, –13).
The maximum point is at (–10, 11).
c) y = 0.3x 2 + 3x
d) y = −1.25 x 2 + 5 x
= 0.3 ( x 2 + 10 x )
(
= −1.25 x 2 − 4 x
= 0.3 ( x 2 + 10 x + 52 − 52 )
= 0.3 ( x + 10 x + 5 ) − 0.3 ( 5 2
2
2
( = −1.25 ( x
)
= −1.25 x 2 − 4 x + ( −2 ) − ( −2 )
)
= 0.3 ( x + 5) − 7.5 2
2
2
)
2
2
e) y = 0.5 x 2 − 6 x + 12
f) y = −0.02 x 2 − 0.6 x − 9
)
= −0.02 ( x 2 + 30 x ) − 9
= 0.5 x 2 − 12 x + 12
)
= 0.5 x 2 − 12 x + ( −6 ) − ( −6 ) + 12 2
2
2
)
− 12 x + ( −6 ) − 0.5 ( −6 ) + 12 2
2
= −0.02 ( x 2 + 30 x + 152 − 152 ) − 9
= −0.02 ( x 2 + 30 x + 152 ) − ( −0.02 ) (152 ) − 9 = −0.02 ( x + 15) − 4.5 2
= 0.5 ( x − 6 ) − 6 2
The minimum point is at (6, –6).
Chapter 6 Section 1
The maximum point is at (–15, –4.5).
Question 18
Page 272
y = 0.2 x 2 − 1.6 x + 4.2
(
)
= 0.2 x 2 − 8 x + 4.2
( = 0.2 ( x
)
= 0.2 x 2 − 8 x + ( −4 ) − ( −4 ) + 4.2 2
2
2
)
− 8 x + ( −4 ) − 0.2 ( −4 ) + 4.2 2
2
= −1.25 ( x − 2 ) + 5
The maximum point is at (2, 5).
( = 0.5 ( x
)
− 4 x + ( −2 ) − ( −1.25)( −2 )
The minimum point is at (–5, –7.5).
(
2
2
= 0.2 ( x − 4 ) + 1 2
The depth of the half-pipe is 4.2 – 1, or 3.2 m.
18 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 1
Question 19
a) c = 6, h = 4; x 2 + 8 x + 16 = ( x + 4 )
Page 272
2
b) b = 12, h = 6; x 2 + 12 x + 36 = ( x + 6 )
2
or b = –12, h = –6; x 2 − 12 x + 36 = ( x − 6 )
2
c) b = –10, c = 27; ( x − 5 ) + 2 = x 2 − 10 x + 25 + 2 2
= x 2 − 10 x + 27 Chapter 6 Section 1
Question 20
Page 272
d = 0.15v 2 − 9v + 195 = 0.15 ( v 2 − 60v ) + 195
= 0.15 ( v 2 − 60v + 302 − 302 ) + 195
= 0.15 ( v 2 − 60v + 302 ) − 0.15 ( 302 ) + 195 = 0.15 ( v − 30 ) + 60 2
Minimum drag occurs at a speed of 30 km/h. Chapter 6 Section 1
Question 21
Page 272
y = − x 2 + 10 x − 21 = − ( x 2 − 10 x ) − 21
(
)
= − x 2 − 10 x + ( −5) − ( −5) − 21 2
2
= − ( x 2 − 10 x + 25) − ( −1)( −5) − 21 2
= − ( x − 5) + 4 2
The maximum height of the spring is 4 m. It will hit the ceiling before reaching the box. Chapter 6 Section 1
Question 22
Page 272
Maximum productivity occurs at 13.7 h of training.
MHR • Principles of Mathematics 10 Solutions
19
Chapter 6 Section 1
Question 23
Page 273
Let the length be represented by x. The width will be 10 – x.
A = x (10 − x ) = − x 2 + 10 x = − ( x 2 − 10 x )
( = −(x
= − x 2 − 10 x + ( −5) − ( −5) 2
2
)
2
)
− 10 x + ( −5) − ( −1)( −5) 2
2
= − ( x − 5) + 25 2
The maximum area of 25 cm2 occurs at a length of 5 cm and a width of 5 cm. Bend the pipe cleaner into a square. Chapter 6 Section 1
Question 24
Page 273
Let x represent the width of the field. The length is 200 – 2x. A = x ( 200 − 2 x ) = −2 x 2 + 200 x = −2 ( x 2 − 100 x )
( = −2 ( x
= −2 x 2 − 100 x + ( −50 ) − ( −50 ) 2
2
)
2
)
− 100 x + ( −50 ) − ( −2 )( −50 ) 2
2
= −2 ( x − 50 ) + 5000 2
The maximum area of 5000 m2 occurs with a width of 50 m and a length of 100 m. Chapter 6 Section 1
Question 25
Page 273
20 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 1
Question 26
Page 273
Let the equation of the parabola be y = ax 2 + bx + c . Since the y-intercept is 5, c = 5. Substitute the coordinates of the points (2, –3) and (–1, 12) into y = ax 2 + bx + 5 to form a linear system of equations that can be solved for a and b. y = ax 2 + bx + 5 y = ax 2 + bx + 5 −3 = a ( 2 ) + b ( 2 ) + 5
12 = a ( −1) + b ( −1) + 5
2
4a + 2b = −8 2 a + b = −4
2
7 = a−b a−b = 7
c
2 a + b = −4 a−b = 7
d
c d c+d
3a = 3 a =1 Substitute a = 1 into equation d. a−b = 7 1− b = 7 b = −6 y = x2 − 6x + 5
( = (x
)
= x 2 − 6 x + ( −3) − ( −3) + 5 2
2
2
)
− 6 x + ( −3) − ( −3) + 5 2
2
= ( x − 3) − 4 2
The vertex is at (3, –4). Chapter 6 Section 1
Question 27
Page 273
y = ax 2 + bx + c b ⎞ ⎛ = a ⎜ x2 + x ⎟ + c a ⎠ ⎝ 2 2 ⎛ b ⎛ b ⎞ ⎛ b ⎞ ⎞ = a ⎜ x2 + x + ⎜ ⎟ − ⎜ ⎟ ⎟ + c ⎜ a ⎝ 2a ⎠ ⎝ 2a ⎠ ⎟⎠ ⎝ 2 2 ⎛ 2 b ⎛ b ⎞ ⎞ ⎛ b ⎞ = a⎜ x + x + ⎜ ⎟ ⎟ − a⎜ ⎟ + c ⎜ a ⎝ 2a ⎠ ⎟⎠ ⎝ 2a ⎠ ⎝ 2
b ⎞ b2 ⎛ = a⎜ x + +c ⎟ − 2a ⎠ 4a ⎝ The x-coordinate of the vertex is −
b . 2a
MHR • Principles of Mathematics 10 Solutions
21
Chapter 6 Section 1
Question 28
Page 273
Refer to the yellow triangle shown. Since the triangle inscribed in the circle is an equilateral triangle, you can show that this is a 30º-60º-90º. The hypotenuse is R, the height is R S , and the base is . Apply the Pythagorean 2 2 theorem to find S. 2
2
⎛S ⎞ ⎛R⎞ 2 ⎜ ⎟ +⎜ ⎟ = R ⎝2⎠ ⎝ 2⎠ S 2 3R 2 = 4 4 2 S = 3R 2 S = 3R The side length of the triangle is 3R . Chapter 6 Section 1
Question 29
Page 273
There are 4 × 3 = 12 ways to draw the names. Two of these include Jane and Farhad. The 2 1 = . Answer D. probability that they will go together is 12 6 Chapter 6 Section 1
Question 30
Page 273
10001000 = 103000
(
= 10100
)
30
= googol30 Answer D
22 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 2
Solve Quadratic Equations
Chapter 6 Section 2
Question 1
Page 279
a) x = −5 or x = −2
b) x = 3 or x = −4
c) x = 1 or x = 7
d) x = 0 or x = −9
e) x = −
g) x =
3 or x = 5 2
1 4 or x = − 2 3
5 3 or x = 3 4
Chapter 6 Section 2 a)
f) x =
Question 2
Page 279
x 2 + 8 x + 12 = 0
( x + 2 )( x + 6 ) = 0 x + 2 = 0 or x + 6 = 0 x = −2 or x = −6 Check by substituting both solutions in the original equation. For x = –2: For x = –6: R.S. = 0 L.S. = x 2 + 8 x + 12 L.S. = x 2 + 8 x + 12 = ( −2 ) + 8 ( −2 ) + 12
= ( −6 ) + 8 ( −6 ) + 12
=0
=0
2
R.S. = 0
2
L.S. = R.S.
L.S. = R.S.
The roots are –2 and –6. b)
h 2 + 9h + 18 = 0
( h + 3)( h + 6 ) = 0 h + 3 = 0 or h + 6 = 0 h = −3 or h = −6 Check by substituting both solutions in the original equation. For h = –3: For h = –6: 2 R.S. = 0 L.S. = h + 9h + 18 L.S. = h 2 + 9h + 18 = ( −3) + 9 ( −3) + 18
= ( −6 ) + 9 ( −6 ) + 18
=0
=0
2
L.S. = R.S.
R.S. = 0
2
L.S. = R.S.
The roots are –3 and –6.
MHR • Principles of Mathematics 10 Solutions
23
c) m 2 + 3m = 0 m ( m + 3) = 0 m + 3 = 0 or m = 0 m = −3
Check by substituting both solutions in the original equation. For m = –3: For m = 0: 2 R.S. = 0 L.S. = m + 3m L.S. = m 2 + 3m = ( −3) + 3 ( −3)
= ( 0) + 3( 0)
=0
=0
2
R.S. = 0
2
L.S. = R.S.
L.S. = R.S.
The roots are –3 and –0. d)
w2 − 18w + 56 = 0
( w − 4 )( w − 14 ) = 0 w−4=0 w=4
or w − 14 = 0 or w = 14
Check by substituting both solutions in the original equation. For w = 4: For w = 14: R.S. = 0 L.S. = w2 − 18w + 56 L.S. = w2 − 18w + 56 = ( 4 ) − 18 ( 4 ) + 56
R.S. = 0
= (14 ) − 18 (14 ) + 56 2
2
=0
=0
L.S. = R.S.
L.S. = R.S.
The roots are 4 and 14. e) x 2 − 2 x = 0 x ( x − 2) = 0 x−2 =0 x=2
or x = 0
Check by substituting both solutions in the original equation. For x = 2: For x = 0: 2 R.S. = 0 L.S. = x − 2 x L.S. = x 2 − 2 x = (2) − 2 (2)
= (0) − 2 (0)
=0
=0
2
R.S. = 0
2
L.S. = R.S.
The roots are 2 and 0.
24 MHR • Principles of Mathematics 10 Solutions
L.S. = R.S.
f)
c 2 − 17c + 30 = 0
( c − 2 )( c − 15) = 0 c−2=0 c=2
or c − 15 = 0 or c = 15
Check by substituting both solutions in the original equation. For c = 2: For c = 15: R.S. = 0 L.S. = c 2 − 17c + 30 L.S. = c 2 − 17c + 30
R.S. = 0
= ( 2 ) − 17 ( 2 ) + 30
= (15 ) − 17 (15 ) + 30
=0
=0
2
2
L.S. = R.S.
L.S. = R.S.
The roots are 2 and 15. g)
n 2 + 9n − 22 = 0
( n + 11)( n − 2 ) = 0 n + 11 = 0 or n − 2 = 0 n = −11 or n=2 Check by substituting both solutions in the original equation. For n = –11: For n = 2: 2 R.S. = 0 L.S. = n + 9n − 22 L.S. = n 2 + 9n − 22 = ( −11) + 9 ( −11) − 22
= ( 2 ) + 9 ( 2 ) − 22
=0
=0
2
R.S. = 0
2
L.S. = R.S.
L.S. = R.S.
The roots are –11 and 2. h) y 2 − 11y = 0
y ( y − 11) = 0 y − 11 = 0 or y = 0 y = 11 Check by substituting both solutions in the original equation. For y = 11: For y = 0: R.S. = 0 L.S. = y 2 − 11 y L.S. = y 2 − 11 y = (11) − 11(11)
= ( 0 ) − 11( 0 )
=0
=0
2
L.S. = R.S.
R.S. = 0
2
L.S. = R.S.
The roots are 11 and 0.
MHR • Principles of Mathematics 10 Solutions
25
Chapter 6 Section 2
Question 3
3 x 2 + 28 x + 9 = 0
a)
Page 280 4k 2 + 19k + 15 = 0
b)
4k 2 + 4k + 15k + 15 = 0
3 x 2 + 27 x + x + 9 = 0
( 3x
2
)
( 4k
+ 27 x + ( x + 9 ) = 0
2
)
+ 4k + (15k + 15 ) = 0
3x ( x + 9 ) + ( x + 9 ) = 0
4k ( k + 1) + 15 ( k + 1) = 0
( x + 9 )( 3x + 1) = 0
( k + 1)( 4k + 15) = 0
x+9=0
or 3x + 1 = 0
x = −9 or
x=−
k +1 = 0 1 3
8 y 2 − 22 y + 15 = 0
c)
8 y 2 − 12 y − 10 y + 15 = 0
(8 y
2
or 4k + 15 = 0 15 k = −1 or k =− 4
− 12 y ) + ( −10 y + 15) = 0
16b 2 − 1 = 0
d)
( 4b + 1) + ( 4b − 1) = 0
4 y ( 2 y − 3 ) − 5 ( 2 y − 3) = 0
( 2 y − 3)( 4 y − 5) = 0 2 y − 3 = 0 or 4 y − 5 = 0 3 5 y= or y= 2 4
4b + 1 = 0
or 4b − 1 = 0 1 1 b = − or b= 4 4
e) 10m 2 + 30m = 0
f) 4 x 2 − 12 x + 9 = 0
10m ( m + 3) = 0
10m = 0 m=0
( 2 x − 3)
or m + 3 = 0 or
m = −3
2x − 3 = 0 3 x= 2
26 MHR • Principles of Mathematics 10 Solutions
2
=0
Chapter 6 Section 2 a)
Question 4
x 2 + 5 x = −4
Page 280 b)
x2 + 5x + 4 = 0
c 2 + 8c + 15 = 0
( x + 1)( x + 4 ) = 0
( c + 3)( c + 5) = 0 c + 3 = 0 or c + 5 = 0 c = −3 or c = −5
x + 1 = 0 or x + 4 = 0 x = −1 or x = −4 c)
k 2 = 13k − 12
d)
b 2 + 1 = −2b b 2 + 2b + 1 = 0
k 2 − 13x + 12 = 0
( k − 12 )( k − 1) = 0
( b + 1)
k − 12 = 0 or k − 1 = 0 k = 12 or k =1 e)
8c + 15 = −c 2
2
=0
b +1 = 0 b = −1
m 2 = 300 − 20m
f)
y2 = 7 y
m 2 + 20m − 300 = 0
y2 − 7 y = 0
( m − 10 )( m + 30 ) = 0
y ( y − 7) = 0
m − 10 = 0 or m + 30 = 0 m = 10 or m = −30
y −7 = 0 y=7
or y = 0
MHR • Principles of Mathematics 10 Solutions
27
Chapter 6 Section 2
Question 5 2m 2 = −7 m − 6
a)
9 x2 = x + 8
b)
2m 2 + 7 m + 6 = 0
9 x2 − x − 8 = 0
2m 2 + 4m + 3m + 6 = 0
9x2 − 9x + 8x − 8 = 0
( 2m
2
)
(9x
+ 4m + ( 3m + 6 ) = 0
2
)
− 9 x + (8 x − 8) = 0
2m ( m + 2 ) + 3 ( m + 2 ) = 0
9 x ( x − 1) + 8 ( x − 1) = 0
( m + 2 )( 2m + 3) = 0
( x − 1)( 9 x + 8) = 0
m+2=0
or 2m + 3 = 0 3 m = −2 or m=− 2
c)
Page 280
4 y 2 − 12 y = −9
x −1 = 0
or 9 x + 8 = 0 8 x = 1 or x=− 9 −5 = 2 p − 16 p 2
d)
4 y 2 − 12 y + 9 = 0
( 2 y − 3)
2
16 p 2 − 2 p − 5 = 0 16 p 2 + 8 p − 10 p − 5 = 0
=0
(16 p
2
+ 8 p ) + ( −10 p − 5) = 0
8 p ( 2 p + 1) − 5 ( 2 p + 1) = 0
( 2 p + 1)(8 p − 5) = 0 2y − 3 = 0 3 y= 2
2 p +1 = 0
or 8 p − 5 = 0 1 5 p = − or p= 2 8
12m 2 = 10 − 37m
e)
(12m
3w2 + 22 w = −7
f)
12m 2 + 37m − 10 = 0
3w2 + 22 w + 7 = 0
12m 2 + 40m − 3m − 10 = 0
3w2 + 21w + w + 7 = 0
2
( 3w
+ 40m ) + ( −3m − 10 ) = 0
2
)
+ 21w + ( w + 7 ) = 0
4m ( 3m + 10 ) − 1( 3m + 10 ) = 0
3w ( w + 7 ) + ( w + 7 ) = 0
( 3m + 10 )( 4m − 1) = 0
( w + 7 )( 3w + 1) = 0
3m + 10 = 0
or 4m − 1 = 0 10 1 m=− or m= 3 4
w+7 =0 w = −7
28 MHR • Principles of Mathematics 10 Solutions
or 3w + 1 = 0 or
w=−
1 3
Chapter 6 Section 2
Question 6
Page 280
a) − x 2 − 10 x − 16 = 0
Divide both sides by − 1.
x + 10 x + 16 = 0 2
( x + 8)( x + 2 ) = 0 x+8=0
or x + 2 = 0
x = −8 or
x = −2
b) 3t 2 + 24t + 45 = 0
Divide both sides by 3.
t + 8t + 15 = 0 2
( t + 3)( t + 5) = 0 t +3=0
or t + 5 = 0
t = −3 or
t = −5
c) 6d 2 + 15d = −9 6d 2 + 15d + 9 = 0
Divide both sides by 3.
2d 2 + 5d + 3 = 0 2d 2 + 2d + 3d + 3 = 0
( 2d
2
+ 2d ) + ( 3d + 3) = 0
2d ( d + 1) + 3 ( d + 1) = 0
( d + 1)( 2d + 3) = 0 d +1 = 0
or 2d + 3 = 0 3 d = −1 or d =− 2
d) −10 g 2 + 32 g = 6 −10 g 2 + 32 g − 6 = 0
Divide both sides by − 2.
5g 2 − 16 g + 3 = 0 5 g 2 − 15g − g + 3 = 0
( 5g
2
− 15g ) + ( − g + 3) = 0
5 g ( g − 3) − 1 ( g − 3 ) = 0
( g − 3)( 5g − 1) = 0 g −3=0
or 5 g − 1 = 0 1 g = 3 or g= 5
MHR • Principles of Mathematics 10 Solutions
29
Chapter 6 Section 2
Question 7
Page 280
− x2 + 2x + 3 = 0 x2 − 2x − 3 = 0
( x + 1)( x − 3) = 0 x + 1 = 0 or x − 3 = 0 x = −1 or x=3 The ball has travelled 3 m horizontally when it hits the ground. Chapter 6 Section 2
Question 8
Page 280
( x + 10 )( 2 x − 3) = 54 2 x − 3x + 20 x − 30 = 54 2
2 x 2 + 17 x − 84 = 0 2 x 2 + 24 x − 7 x − 84 = 0
(2x
2
+ 24 x ) + ( −7 x − 84 ) = 0
2 x ( x + 12 ) − 7 ( x + 12 ) = 0
( x + 12 )( 2 x − 7 ) = 0 x + 12 = 0
or 2x − 7 = 0 7 x = −12 or x= 2
The negative answer is inadmissible. If x is 3.5 cm, the area is 54 cm2. Chapter 6 Section 2
Question 9
a) ( x − 5 )( x − 4 ) = 0 Chapter 6 Section 2
Page 280 b) ( x + 2 )( x − 3) = 0
Question 10
Page 280
a) ( x − 6 )( x + 7 ) = 0 x 2 + x − 42 = 0
b) If you multiply both sides of the equation in part a) by 3, the roots will remain the same. The new equation is equivalent to the equation in part a). Chapter 6 Section 2
Question 11
Page 280
( 3x − 2 )( 5 x + 4 ) = 0 15 x 2 + 12 x − 10 x − 8 = 0 15 x 2 + 2 x − 8 = 0
30 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 2
Question 12
Page 280
a) Answers will vary. For example:
x2 − x − 2 = 0 ( x + 1)( x − 2) = 0
b) Answers will vary. For example:
6x2 + x − 1 = 0 (2 x + 1)(3x − 1) = 0
Chapter 6 Section 2
Question 13
Page 280
Answers will vary. For example: x 2 − x + 3 = 0 There are no integers whose product is 3 and sum is –1. Chapter 6 Section 2
Question 14
Page 280
x 2 + ( x − 1) = 292 2
x 2 + x 2 − 2 x + 1 = 841 2 x 2 − 2 x − 840 = 0
Divide both sides by 2.
x − x − 420 = 0 2
( x + 20 )( x − 21) = 0 x + 20 = 0
or x − 21 = 0
x = −20 or x = 21 The negative answer is inadmissible. One side measures 21 cm, and the other measures 20 cm. Chapter 6 Section 2
Question 15
Page 281
n = 0 will also satisfy the equation. If Chris wants to divide out a common factor, it should not contain any variables. Chris should subtract 15n from both sides of the equation, then divide both sides of the equation by 3, and then solve the equation by factoring.
MHR • Principles of Mathematics 10 Solutions
31
Chapter 6 Section 2 a) For n = 1: S = n ( n + 1)
Question 16
Page 281
For n = 2: S = n ( n + 1)
= 1(1 + 1)
= 2 ( 2 + 1)
=2
=6
The formula works for n = 1 and n = 2. b) S = n ( n + 1)
= 5 ( 5 + 1) = 30 The sum of the first five even numbers is 30. n ( n + 1) = 306
c)
n 2 + n − 306 = 0
( n − 17 )( n + 18) = 0 n − 17 = 0
or n + 18 = 0
n = 17 or n = −18 The value of n is 17. Chapter 6 Section 2
Question 17
Page 281
( 3.90 − 0.10n )(120 + 20n ) = 700 468 + 78n − 12n − 2n 2 = 700 −2n 2 + 66n − 232 = 0
Divide both sides by − 2.
n − 33n + 116 = 0 2
( n − 4 )( n − 29 ) = 0 n−4 =0
or n − 29 = 0
n=4 n = 29 or Either 4 or 29 price reductions result in revenue of $700. Chapter 6 Section 2
Question 18
Page 281
Solutions for the Achievement Checks are shown in the Teacher Resource.
32 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 2
Question 19
Page 281
Let the width be represented by x. The length is x + 7. The diagonal is x + 8. x 2 + ( x + 7 ) = ( x + 8) 2
2
x 2 + x 2 + 14 x + 49 = x 2 + 16 x + 64 x 2 − 2 x − 15 = 0
( x − 5)( x + 3) = 0 x −5= 0 or x + 3 = 0 x = 5 or x = −3 The negative answer is inadmissible. The width is 5 m and the length is 12 m. Chapter 6 Section 2
Question 20
Page 281
P = 1125 ( t − 1) − 4500 2
0 = 1125 ( t 2 − 2t + 1) − 4500 0 = 1125t 2 − 2250t + 1125 − 4500 0 = 1125t 2 − 2250t − 3375 0 = 1125 ( t 2 − 2t − 3) 0 = 1125 ( t − 3)( t + 1)
t −3= 0
or t + 1 = 0
t = 3 or t = −1 The positive t-intercept is 3. Ralph will lose money for the first two years, break even in the third year, and make a profit in the fourth and fifth years.
MHR • Principles of Mathematics 10 Solutions
33
Chapter 6 Section 2 a)
Question 21
Page 281
y2 + 3y + 2 = 0
( y + 1)( y + 2 ) = 0 y +1 = 0
or y + 2 = 0
y = −1 or
y = −2
The coefficients are the same for the two equations, but the solutions for y 2 + 3 yy + 2 x 2 = 0 are y = –x and y = –2x. b) i) y 2 + 3 yx + 2 x 2 = 0
( y + x )( y + 2 x ) = 0 y+x=0 or y + 2 x = 0 y = − x or y = −2 x 5 y 2 − 6 yx − 8 x 2 = 0
ii)
5 y 2 − 10 yx + 4 yx − 8 x 2 = 0
(5 y
2
) (
)
− 10 yx + 4 yx − 8 x 2 = 0
5 y ( y − 2x ) + 4x ( y − 2x ) = 0
( y − 2 x )( 5 y + 4 x ) = 0 y − 2 x = 0 or 5y + 4 x = 0 y = 2 x or
iii)
4 y=− x 5
1 2 1 1 y − yx + x 2 = 0 9 3 4 2 4 y − 12 yx + 9 x 2 = 0
( 2 y − 3x )
2
=0
2 y − 3x = 0 y=
3 x 2
34 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Graph Quadratics Using the x-Intercepts
Chapter 6 Section 3
Question 1
Page 288
Factor and solve the corresponding quadratic equation by letting y = 0. a) y = x 2 + 5 x + 6 b) y = x 2 − 11x + 28 0 = ( x + 2 )( x + 3) x + 2 = 0 or x + 3 = 0
0 = ( x − 7 )( x − 4 ) x − 7 = 0 or x − 4 = 0
x = −2 or x = −3 The x-intercepts are –2 and –3.
x = 7 or x=4 The x-intercepts are 7 and 4.
c) y = x 2 + 9 x
d) y = x 2 + 5 x − 24
0 = x ( x + 9) x = 0 or x + 3 = 0 x = −3 The x-intercepts are 0 and –9.
0 = ( x + 8 )( x − 3) x + 8 = 0 or x − 3 = 0 x = −8 or x=3 The x-intercepts are –8 and 3.
e) y = x 2 − 2 x − 8
f) y = x 2 + 9 x − 36
0 = ( x − 4 )( x + 2 ) x − 4 = 0 or x + 2 = 0 x = 4 or x = −2 The x-intercepts are 4 and –2.
0 = ( x + 12 )( x − 3) x + 12 = 0 or x − 3 = 0 x = −12 or x=3 The x-intercepts are –12 and 3.
MHR • Principles of Mathematics 10 Solutions
35
Chapter 6 Section 3
Question 2
Page 288
Factor and solve the corresponding quadratic equation by letting y = 0. a) y = 4 x 2 + 20 x + 9 b) y = 8 x 2 − 6 x 0 = 2 x ( 4 x − 3)
0 = 4 x 2 + 2 x + 18 x + 9
(
)
0 = 4 x 2 + 2 x + (18 x + 9 ) 0 = 2 x ( 2 x + 1) + 9 ( 2 x + 1) 0 = ( 2 x + 1)( 2 x + 9 )
2x + 1 = 0 x=−
or 2 x + 9 = 0 1 or 2
x=−
2x = 0 9 2
c) y = 6 x 2 − 11x − 7 0 = 6 x 2 + 3 x − 14 x − 7
(
)
or 4 x − 3 = 0 3 or x= 4
x=0
d) y = 5 x 2 + 6 x − 8 0 = 5 x 2 + 10 x − 4 x − 8
(
)
0 = 6 x 2 + 3 x + ( −14 x − 7 )
0 = 5 x 2 + 10 x + ( −4 x − 8 )
0 = 3x ( 2 x + 1) − 7 ( 2 x + 1)
0 = 5x ( x + 2 ) − 4 ( x + 2 )
0 = ( 2 x + 1)( 3 x − 7 )
0 = ( x + 2 )( 5 x − 4 )
2x + 1 = 0
or 3x − 7 = 0 1 7 x = − or x= 2 3
x+2=0
e) y = 3x 2 − 13 x + 4
f) y = 4 x 2 − 20 x + 25
0 = 3x 2 − 12 x − x + 4
(
)
0 = 3 x 2 − 12 x + ( − x + 4 )
or 5 x − 4 = 0 4 x = −2 or x= 5
0 = ( 2 x − 5)
0 = 3x ( x − 4 ) − 1( x − 4 ) 0 = ( x − 4 )( 3 x − 1)
x−4=0
or 3x − 1 = 0 1 x = 4 or x= 3
2x − 5 = 0 5 x= 2
36 MHR • Principles of Mathematics 10 Solutions
2
Chapter 6 Section 3
Question 3
Page 289
a) Factor and solve the corresponding quadratic equation. y = x 2 + 9 x + 14
0 = ( x + 2 )( x + 7 ) The x-intercepts are –2 and –7. Find the x-coordinate of the vertex, and then, the ycoordinate. −2 + ( −7 ) 2 9 =− 2 2 y = x + 9 x + 14 x=
2
⎛ 9⎞ ⎛ 9⎞ = ⎜ − ⎟ + 9 ⎜ − ⎟ + 14 ⎝ 2⎠ ⎝ 2⎠ 25 =− 4
⎛ 9 25 ⎞ The vertex is ⎜ − , − ⎟ . 4 ⎠ ⎝ 2 b) Factor and solve the corresponding quadratic equation. y = x2 − 6x + 8
0 = ( x − 2 )( x − 4 ) The x-intercepts are 2 and 4. Find the x-coordinate of the vertex, and then, the ycoordinate. 2+4 2 =3
x=
y = x2 − 6x + 8 = ( 3) − 6 ( 3) + 8 2
= −1 The vertex is ( 3, −1) .
MHR • Principles of Mathematics 10 Solutions
37
c) Factor and solve the corresponding quadratic equation. y = − x2 − 4 x + 5
0 = − ( x 2 + 4 x − 5) 0 = − ( x + 5)( x − 1) The x-intercepts are –5 and 1. Find the x-coordinate of the vertex, and then, the ycoordinate. −5 + 1 2 = −2
x=
y = − x2 − 4 x + 5 = − ( −2 ) − 4 ( −2 ) + 5 2
=9 The vertex is ( −2,9 ) .
d) Factor and solve the corresponding quadratic equation. y = − x 2 − 5x
0 = − x ( x + 5) The x-intercepts are 0 and –5. Find the x-coordinate of the vertex, and then, the ycoordinate. 0 + ( −5 ) 2 5 =− 2 y = − x 2 − 5x x=
2
⎛ 5⎞ ⎛ 5⎞ = − ⎜ − ⎟ − 5⎜ − ⎟ ⎝ 2⎠ ⎝ 2⎠ 25 = 4
⎛ 5 25 ⎞ The vertex is ⎜ − , ⎟ . ⎝ 2 4 ⎠
38 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 4
Page 289
a) Factor and solve the corresponding quadratic equation. y = x2 − 9
0 = ( x + 3)( x − 3) The x-intercepts are –3 and 3. Find the x-coordinate of the vertex, and then, the ycoordinate. −3 + 3 2 =0
x=
y = x2 − 9 = ( 0) − 9 2
= −9 The vertex is ( 0, −9 ) . b) Factor and solve the corresponding quadratic equation. y = − x 2 + 10 x − 9
0 = − ( x 2 − 10 x + 9 ) 0 = − ( x − 9 )( x − 1) The x-intercepts are 9 and 1. Find the x-coordinate of the vertex, and then, the y-coordinate. 9 +1 2 =5
x=
y = − x 2 + 10 x − 9 = − ( 5 ) + 10 ( 5 ) − 9 2
= 16 The vertex is ( 5,16 ) .
MHR • Principles of Mathematics 10 Solutions
39
c) Factor and solve the corresponding quadratic equation. y = x 2 − 12 x + 36
0 = ( x − 6)
2
The x-intercept is 6. Find the x-coordinate of the vertex, and then, the ycoordinate. 6+6 2 =6
x=
y = x 2 − 12 x + 36 = ( 6 ) − 12 ( 6 ) + 36 2
=0 The vertex is ( 6,0 ) . d) Factor and solve the corresponding quadratic equation. y = 16 − x 2
0 = ( 4 + x )( 4 − x ) The x-intercepts are –4 and 4. Find the x-coordinate of the vertex, and then, the ycoordinate. −4 + 4 2 =0
x=
y = 16 − x 2 = 16 − ( 0 )
2
= 16 The vertex is ( 0,16 ) .
40 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 5
Page 289
a) Factor and solve the corresponding quadratic equation. y = 2 x 2 + 15 x + 7 0 = 2 x 2 + 14 x + x + 7 0 = ( 2 x 2 + 14 x ) + ( x + 7 ) 0 = 2 x ( x + 7) + ( x + 7) 0 = ( x + 7 )( 2 x + 1)
x+7=0 x = −7
or 2 x + 1 = 0 or
x=−
1 2
1 The zeros are –7 and − . 2 Find the x-coordinate of the vertex, and then, the y-coordinate. ⎛ 1⎞ −7 + ⎜ − ⎟ ⎝ 2⎠ x= 2 15 =− 4 y = 2 x 2 + 15 x + 7 2
⎛ 15 ⎞ ⎛ 15 ⎞ = 2 ⎜ − ⎟ + 15 ⎜ − ⎟ + 7 ⎝ 4⎠ ⎝ 4⎠ 169 =− 8
⎛ 15 169 ⎞ The vertex is ⎜ − , − . 8 ⎟⎠ ⎝ 4
MHR • Principles of Mathematics 10 Solutions
41
b) Factor and solve the corresponding quadratic equation. y = 12 x 2 − 16 x + 5 0 = 12 x 2 − 6 x − 10 x + 5 0 = (12 x 2 − 6 x ) + ( −10 x + 5) 0 = 6 x ( 2 x − 1) − 5 ( 2 x − 1) 0 = ( 2 x − 1)( 6 x − 5)
2x −1 = 0 1 x= 2
or 6 x − 5 = 0 5 or x= 6 1 5 The zeros are and . 2 6 Find the x-coordinate of the vertex, and then, the y-coordinate. 1 5 + x= 2 6 2 2 = 3 y = 12 x 2 − 16 x + 5 2
⎛2⎞ ⎛2⎞ = 12 ⎜ ⎟ − 16 ⎜ ⎟ + 5 ⎝3⎠ ⎝3⎠ 1 =− 3
⎛ 2 1⎞ The vertex is ⎜ , − ⎟ . ⎝ 3 3⎠
42 MHR • Principles of Mathematics 10 Solutions
c) Factor and solve the corresponding quadratic equation. y = −8 x 2 − 13x + 6
0 = − (8 x 2 + 13x − 6 )
0 = − (8 x 2 + 16 x − 3x − 6 ) 0 = − ⎡⎣ ( 8 x 2 + 16 x ) + ( −3x − 6 )⎤⎦ 0 = − ⎡⎣8 x ( x + 2 ) − 3 ( x + 2 )⎤⎦ 0 = − ( x + 2 )( 8 x − 3)
8 x − 3 = 0 or x + 2 = 0 3 x= or x = −2 8 3 The zeros are and −2 . 8 Find the x-coordinate of the vertex, and then, the y-coordinate. 3 + ( −2 ) x= 8 2 13 =− 16 y = −8 x 2 − 13x + 6 2
⎛ 13 ⎞ ⎛ 13 ⎞ = −8 ⎜ − ⎟ − 13 ⎜ − ⎟ + 6 ⎝ 16 ⎠ ⎝ 16 ⎠ 361 = 32
⎛ 13 361 ⎞ The vertex is ⎜ − , − ⎟. ⎝ 16 32 ⎠
MHR • Principles of Mathematics 10 Solutions
43
d) Factor and solve the corresponding quadratic equation. y = 8 x 2 + 17 x + 9 0 = 8x2 + 8x + 9 x + 9 0 = (8 x 2 + 8 x ) + ( 9 x + 9 ) 0 = 8 x ( x + 1) + 9 ( x + 1) 0 = ( x + 1)(8 x + 9 )
x +1 = 0
or 8 x + 9 = 0
x = −1 or
x=−
9 8
9 The zeros are –1 and − . 8 Find the x-coordinate of the vertex, and then, the y-coordinate. ⎛ 9⎞ −1 + ⎜ − ⎟ ⎝ 8⎠ x= 2 17 =− 16 y = 8 x 2 + 17 x + 9 2
⎛ 17 ⎞ ⎛ 17 ⎞ = 8 ⎜ − ⎟ + 17 ⎜ − ⎟ + 9 ⎝ 16 ⎠ ⎝ 16 ⎠ 1 =− 32
1 ⎞ ⎛ 17 The vertex is ⎜ − , − ⎟ . 16 32 ⎝ ⎠
44 MHR • Principles of Mathematics 10 Solutions
e) Factor and solve the corresponding quadratic equation. y = 16 x 2 − 24 x + 9
0 = ( 4 x − 3)
2
4x − 3 = 0 3 x= 4 The zero is
3 . 4
Find the x-coordinate of the vertex, and then, the y-coordinate. 3 3 + x= 4 4 2 3 = 4 y = 16 x 2 − 24 x + 9 2
⎛3⎞ ⎛3⎞ = 16 ⎜ ⎟ − 24 ⎜ ⎟ + 9 ⎝4⎠ ⎝4⎠ =0
⎛3 ⎞ The vertex is ⎜ ,0 ⎟ . ⎝4 ⎠
MHR • Principles of Mathematics 10 Solutions
45
f) Factor and solve the corresponding quadratic equation. y = −4 x 2 − 18 x − 8
0 = −2 ( 2 x 2 + 9 x + 4 )
0 = −2 ( 2 x 2 + 8 x + x + 4 ) 0 = −2 ⎡⎣( 2 x 2 + 8 x ) + ( x + 4 ) ⎤⎦ 0 = −2 ⎡⎣ 2 x ( x + 4 ) + ( x + 4 ) ⎤⎦ 0 = −2 ( x + 4 )( 2 x + 1) x+4=0 x = −4
or 2 x + 1 = 0 or
x=−
1 2
1 The zeros are –4 and − . 2 Find the x-coordinate of the vertex, and then, the y-coordinate. ⎛ 1⎞ −4 + ⎜ − ⎟ ⎝ 2⎠ x= 2 9 =− 4 y = −4 x 2 − 18 x − 8 2
⎛ 9⎞ ⎛ 9⎞ = −4 ⎜ − ⎟ − 18 ⎜ − ⎟ − 8 ⎝ 4⎠ ⎝ 4⎠ 49 = 4
⎛ 9 49 ⎞ The vertex is ⎜ − , ⎟ . ⎝ 4 4 ⎠
46 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 6
Page 289
a) Since the x-intercepts are 0 and 6, the equation has the form y = ax ( x − 6 ) . To find a, substitute (x, y) = (5, 5). 2 5 = a ( 5 ) − 6a ( 5 )
5 = 25a − 30a 5 = −5a −1 = a y = −1x ( x − 6) = − x2 + 6x
b) Since the x-intercepts are –4 and 6, the equation has the form y = a ( x + 4 )( x − 6 ) . To find a, substitute (x, y) = (1, –5). −5 = a (1 + 4 )(1 − 6 ) −5 = −25a
1 =a 5 1 y = ( x + 4 )( x − 6 ) 5 1 2 = ( x − 2 x − 24 ) 5 1 2 24 = x2 − x − 5 5 5
MHR • Principles of Mathematics 10 Solutions
47
Chapter 6 Section 3
Question 7
Page 289
a) Since the x-intercepts are –8 and –2, the equation has the form y = a ( x + 8 )( x + 2 ) . To find a, substitute (x, y ) = (–7, –10). −10 = a ( −7 + 8 )( −7 + 2 ) −10 = −5a
2=a y = 2 ( x + 8 )( x + 2 )
(
= 2 x 2 + 10 x + 16
)
= 2 x 2 + 20 x + 32
b) Since the x-intercepts are –5 and –1, the equation has the form y = a ( x + 5)( x + 1) . To find a, substitute (x, y) = (–3, 3). 3 = a ( −3 + 5)( −3 + 1)
3 = −4a −
3 =a 4 3 ( x + 5)( x + 1) 4 3 = − ( x 2 + 6 x + 5) 4 3 9 15 = − x2 − x − 4 2 4
y=−
c) Since the x-intercepts are 0 and 8, the equation has the form y = ax ( x − 8 ) . To find a, substitute (x, y) = (6, 6). 6 = a ( 6 )( 6 − 8 )
6 = −12a −
1 =a 2 1 y = − x ( x − 8) 2 1 = − ( x2 − 8x ) 2 1 = − x2 + 4 x 2
48 MHR • Principles of Mathematics 10 Solutions
d) Since the x-intercepts are –4 and 5, the equation has the form y = a ( x + 4 )( x − 5) . To find a, substitute (x, y) = (1, –6). −6 = a (1 + 4 )(1 − 5)
−6 = −20a 0.3 = a y = 0.3 ( x + 4 )( x − 5)
(
= 0.3 x 2 − x − 20
)
= 0.3x − 0.3x − 6 2
Chapter 6 Section 3
Question 8
Page 290
a) h = −d 2 + 4
0 = − (d 2 − 4) 0 = − ( d + 2 )( d − 2 ) The d-intercepts are at –2 and 2. The width of the garage is 4 m. Find the vertex. −2 + 2 2 =0
d=
h = −d 2 + 4 = − ( 0) + 4 2
=4 The height of the garage is 4 m. b)
c) The relation is valid for −2 ≤ d ≤ 2 . h must be positive.
MHR • Principles of Mathematics 10 Solutions
49
Chapter 6 Section 3
Question 9
Page 290
a) y = −3x 2 + 11x + 4
0 = − ( 3x 2 − 11x − 4 )
0 = − ( 3x 2 − 12 x + x − 4 ) 0 = − ⎡⎣( 3x 2 − 12 x ) + ( x − 4 )⎤⎦ 0 = − ⎡⎣3x ( x − 4 ) + ( x − 4 )⎤⎦ 0 = − ( x − 4 )( 3x + 1) x−4=0
or 3x + 1 = 0 1 x = 4 or x=− 3 1 The zeros are 4 and − . 3 b) The relation is valid for 0 ≤ x ≤ 4 . c) The rocket has travelled 4 m horizontally when is lands on the ground. d) Find the vertex. 1 − +4 x= 3 2 11 = 6 y = −3x 2 + 11x + 4 2
⎛ 11 ⎞ ⎛ 11 ⎞ = −3 ⎜ ⎟ + 11⎜ ⎟ + 4 6 ⎝ ⎠ ⎝6⎠ = 14.08
The maximum height of the rocket is 14.08 m.
50 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 10
Page 290
a)
b) Since the x-intercepts are –100 and 100, the equation has the form y = a ( x + 100 )( x − 100 ) . To find a, substitute (x, y) = (0, 4). 4 = a ( 0 + 100 )( 0 − 100 )
4 = −10 000a −
1 =a 2500 1 ( x + 100 )( x − 100 ) 2500 1 =− ( x 2 − 10 000) 2500 1 =− x2 + 4 2500
y=−
1 2 (80 ) + 4 2500 = 1.44 A point on the arch that is 20 m horizontally from one end is 1.44 m high. y=−
MHR • Principles of Mathematics 10 Solutions
51
Chapter 6 Section 3
Question 11
Page 290
The x-coordinate of the vertex is –3, which is 8 units from the x-intercept –11. The other xintercept will be another 8 units to the right, or 5. Since the x-intercepts are –11 and 5, the equation has the form y = a ( x + 11)( x − 5) . To find a, substitute (x, y) = (–3, 7). 7 = a ( −3 + 11)( −3 − 5) 7 = −64a 7 − =a 64 7 y = − ( x + 11)( x − 5) 64 7 = − ( x 2 + 6 x − 55) 64 7 21 385 x+ = − x2 − 64 32 64
The y-intercept is
385 . 64
52 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 12
Page 290
a)
1 2 16 36 d + d+ 35 35 35 1 2 d − 16d − 36 0=− 35 1 2 d + 2d − 18d − 36 0=− 35 1 0 = − ⎡⎣ d 2 + 2d − (18d + 36 )⎤⎦ 35 1 0 = − ⎡⎣ d ( d + 2 ) − 18 ( d + 2 )⎤⎦ 35 1 0 = − ( d + 2 )( d − 18 ) 35
h=−
(
)
(
)
(
)
The d-intercepts are –2 and 18. b)
c) The relation is valid for 0 ≤ d ≤ 18 . The height must be positive. d) The ball was kicked at a height of
36 m. 35
e) The ball had travelled 18 m when it landed on the ground.
MHR • Principles of Mathematics 10 Solutions
53
Chapter 6 Section 3
Question 13
Page 290
a)
1 2 2 w + w 125 25 1 0=− w ( w − 10 ) 125
b) d = −
The zeros are 0 and 10. The relation is valid for 0 ≤ w ≤ 10 , since d must be positive. c) The road is 10 m wide. d) Find the vertex.
0 + 10 2 =5
w=
1 2 2 w + w 125 25 2 1 2 =− ( 5) + ( 5) 125 25 = 0.2
d =−
The maximum height of the road is 0.2 m.
Chapter 6 Section 3
Question 14
Page 290
If a parabola has only one x-intercept, then the vertex is also the x-intercept.
54 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 15
Page 290
a) n = 10 or –10; y = x 2 + 10 x + 25 or y = x 2 − 10 x + 25
b) n = 6 or –6; y = − x 2 + 6 x − 9 or y = − x 2 − 6 x − 9
c) n = 1; y = 16 x 2 − 8 x + 1
MHR • Principles of Mathematics 10 Solutions
55
Chapter 6 Section 3
Question 16
Page 291
a) The Marble Heads: y = − x2 + 2 x + 3
0 = − ( x 2 − 2 x − 3) 0 = − ( x − 3)( x + 1)
x −3= 0 x=3
or x + 1 = 0 or
x = −1
The XY Team: y = −2 x 2 + x + 3 0 = − ( 2 x 2 − x − 3)
0 = −2 ( 2 x 2 + 2 x − 3 x − 3 ) 0 = −2 ⎡⎣( 2 x 2 + 2 x ) + ( −3x − 3)⎤⎦ 0 = −2 ⎡⎣ 2 x ( x + 1) − 3 ( x + 1)⎤⎦ 0 = −2 ( x + 1)( 2 x − 3) x +1 = 0
or 2 x − 3 = 0 3 x = −1 or x= 2
The Marble Heads' marble travels farther by 1.5 m. b) Both marbles are at a height of 3 m at a horizontal distance of 0 m.
56 MHR • Principles of Mathematics 10 Solutions
c) Find the vertices. The Marble Heads: −1 + 3 x= 2 =1
y = − x2 + 2 x + 3 = − (1) + 2 (1) + 3 2
=4 The XY Team: 3 −1 + 2 x= 2 1 = 4 y = −2 x 2 + x + 3 2
⎛1⎞ ⎛1⎞ = −2 ⎜ ⎟ + ⎜ ⎟ + 3 ⎝4⎠ ⎝4⎠ = 3.125 The Marble Heads' marble flies higher by 0.875 m.
MHR • Principles of Mathematics 10 Solutions
57
Chapter 6 Section 3
Question 17
1 2 x + 50 100 1 0=− x 2 − 5000 100 1 x + 5000 0=− 100
Page 291
a) y = −
(
)
(
)( x −
5000
)
The width of the hangar is 2 5000 , or about 141.42 m.
141.42 6.08 23.24 Six planes can fit side by side inside the hangar. b) The width of the airplane hangar decreases as the height increases. 1 2 x + 50 100 1 2 2=− x + 50 100 1 0=− x 2 − 4800 100 1 x − 4800 =− 100 y=−
(
)
(
)( x +
4800
)
The width of the hangar is 2 4800 , or about 138.56 m.
139.56 5.96 23.24 Only 5 planes can fit side by side if the wings are 2 m above the ground. Chapter 6 Section 3
Question 18
Page 291
Answers will vary. For example: a) Parabola A: y = x 2 − 8 x + 18
Parabola B: y = − x 2 − 12 x − 37 b) The parabolas do not intersect the x-axis and thus do not have x-intercepts. Therefore, the equations cannot be factored.
58 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 3
Question 19
Page 291
4 ( x + 3)( x + a ) = 4 x 2 + x + c
(
)
4 x 2 + ( 3 + a ) x + 3a = 4 x 2 + x + c 4 x 2 + 4 ( 3 + a ) x + 12a = 4 x 2 + x + c 4 (3 + a ) = 1 12 + 4a = 1 11 4 c = 12a
a=−
⎛ 11 ⎞ = 12 ⎜ − ⎟ ⎝ 4⎠ = −33 Chapter 6 Section 3
Question 20
Page 291
There are no x-intercepts for this graph. The vertex of the graph of y = x2 + 4 is (0, 4), and the graph opens upward. The expression a2 + b2 cannot be factored since the graph of any parabola of the form y = x2 + b2 does not have any x-intercepts. It cannot be solved by factoring.
Chapter 6 Section 3 a)
Question 21
Page 291
( ) ( 3 ) − 12 ( 3 ) + 27 = 0 ( 3 − 9 )(3 − 3) = 0 32 x − 12 3x + 27 = 0 x 2
x
x
x
3x = 9 or 3x = 3 x = 2 or x = 1 b)
( ) 2 − 3 ( 2 )( 2 ) + 128 = 0 ( 2 ) − 24 ( 2 ) + 128 = 0 ( 2 − 8)( 2 − 16 ) = 0
22 x − 3 2 x + 3 + 128 = 0
2x
x
x 2
3
x
x
x
2 x = 8 or 2 x = 16 x = 3 or x = 4
MHR • Principles of Mathematics 10 Solutions
59
Chapter 6 Section 3
Question 22
Page 291
a) There are 2 × 2 × 2 = 8 possible outcomes. Three of these, BBG, BGB, and GBB, are 3 favourable. The probability of exactly 2 boys is . 8 b) The possible outcomes are
JBB JBG JGB JGG
BJB BJG GJB GJG
BBJ BGJ GBJ GGJ
Half of these have 2 boys. The probability of 2 boys is
1 . 2
c) John is a boy. This eliminates some of the possible families.
60 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
The Quadratic Formula
Chapter 6 Section 4
Question 1
a) For 7x2 + 24x + 9 = 0, a = 7, b = 24, and c = 9.
x= =
−b ± b 2 − 4ac 2a −24 ± 242 − 4 ( 7 )( 9 ) 2(7)
−24 ± 324 14 −24 ± 18 = 14 =
c) For 4x2 – 12x + 9 = 0, a = 4, b = –12, and c = 9.
=
−b ± b 2 − 4ac 2a 12 ±
( −12 ) − 4 ( 4 )( 9 ) 2 ( 4)
x= =
12 ± 0 8 3 = 2
−4 ± 42 − 4 ( 2 )( −7 ) 2 ( 2)
−4 ± 72 4
−4 + 72 −4 − 72 and . 4 4
d) For 2x2 – 7x + 4 = 0, a = 2, b = –7, and c = 4. x= = =
3 . 2
−b ± b 2 − 4ac 2a
The roots are
2
=
The root is
b) For 2x2 + 4x – 7 = 0, a = 2, b = 4, and c = –7.
=
3 The roots are –3 and − . 7
x=
Page 300
−b ± b 2 − 4ac 2a 7±
( −7 )
2
− 4 ( 2 )( 4 )
2 ( 2)
7 ± 17 4
The roots are
7 + 17 7 − 17 and . 4 4
MHR • Principles of Mathematics 10 Solutions
61
e) For 3x2 + 5x – 1 = 0, a = 3, b = 5, and c = –1.
x= = =
f) For 16x2 + 24x + 9 = 0, a = 16, b = 24, and c = 9.
−b ± b 2 − 4ac 2a
x=
−5 ± 52 − 4 ( 3)( −1)
=
2 ( 3)
−5 ± 37 6
The roots are
−b ± b 2 − 4ac 2a −24 ± 242 − 4 (16 )( 9 ) 2 (16 )
−24 ± 0 32 3 =− 4 3 The root is − . 4 =
−5 + 37 −5 − 37 and . 6 6
Chapter 6 Section 4
Question 2
Page 300
a) For 3x2 + 14x + 5 = 0, a = 3, b = 14, and c = 5. x= =
−b ± b 2 − 4ac 2a −14 ± 142 − 4 ( 3)( 5 ) 2 ( 3)
−14 ± 136 6 −14 ± 2 34 = 6 =
=
−7 ± 34 3
The exact roots are
−7 + 34 −7 − 34 and . The approximate roots are –0.39 and –4.28. 3 3
62 MHR • Principles of Mathematics 10 Solutions
b) For 8x2 + 12x + 1 = 0, a = 8, b = 12, and c = 1. x= =
−b ± b 2 − 4ac 2a −12 ± 122 − 4 ( 8 )(1) 2 (8)
−12 ± 112 16 −12 ± 4 7 = 16 =
=
−3 ± 7 4
The exact roots are
−3 + 7 −3 − 7 and . The approximate roots are –0.09 and –1.41. 4 4
c) For 4x2 – 7x – 1 = 0, a = 4, b = –7, and c = –1. x= = =
−b ± b 2 − 4ac 2a 7±
( −7 )
2
− 4 ( 4 )( −1)
2 ( 4)
7 ± 65 8
The exact roots are
7 + 65 7 − 65 and . The approximate roots are 1.88 and –0.13. 8 8
d) For 10x2 – 45x – 7 = 0, a = 10, b = –45, and c = –7. x= = =
−b ± b 2 − 4ac 2a 45 ±
( −45 ) − 4 (10 )( −7 ) 2 (10 ) 2
45 ± 2305 20
The exact roots are
45 + 2305 45 − 2305 and . The approximate roots are 4.65 and –0.15. 20 20
MHR • Principles of Mathematics 10 Solutions
63
e) For –5x2 + 16x – 2 = 0, a = –5, b = 16, and c = –2. x= = =
−b ± b 2 − 4ac 2a −16 ± 162 − 4 ( −5 )( −2 ) 2 ( −5 )
−16 ± 216 −10 −16 + 216 −16 − 216 and . The approximate roots are 0.13 and 3.07. −10 −10
The exact roots are
f) For –6x2 + 17x + 5 = 0, a = –6, b = 17, and c = 5. x= =
−b ± b 2 − 4ac 2a −17 ± 17 2 − 4 ( −6 )( 5 ) 2 ( −6 )
−17 ± 409 −12 17 ± 409 = 12
=
The exact roots are
17 + 409 17 − 409 and . The approximate roots are 3.10 and –0.27. 12 12
64 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
Question 3
Page 300
Use the quadratic formula to solve the corresponding quadratic equation. a) For 5x2 – 14x – 3 = 0, a = 5, b = –14, and c = –3. x= =
−b ± b 2 − 4ac 2a −14 ± 142 − 4 ( 5 )( −3) 2 ( 5)
−14 ± 256 10 −14 ± 16 = 10 =
The x-intercepts are 3 and –0.2. Find the vertex. For the x-coordinate, use x = − x=−
b . 2a
−14 2 ( 5)
= 1.4 y = 5 x 2 − 14 x − 3 = 5 (1.4 ) − 14 (1.4 ) − 3 2
= −12.8 The vertex is (1.4, –12.8). The axis of symmetry is x = 1.4 .
MHR • Principles of Mathematics 10 Solutions
65
b) For 2x2 – 5x – 12 = 0, a = 2, b = –5, and c = –12. x= =
−b ± b 2 − 4ac 2a 5±
( −5 )
2
− 4 ( 2 )( −12 )
2 ( 2)
5 ± 121 10 −14 ± 11 = 10 =
The x-intercepts are 4 and –1.5. Find the vertex. For the x-coordinate, use x = − x=−
b . 2a
−5 2 (2)
= 1.25 y = 2 x 2 − 5 x − 12 = 2 (1.25) − 5 (1.25) − 12 2
= −15.125 The vertex is (1.25, –15.125). The axis of symmetry is x = 1.25 .
66 MHR • Principles of Mathematics 10 Solutions
c) y = x 2 + 10 x + 25
0 = ( x + 5)
2
x+5=0 x = −5 The x-intercept is –5. Find the vertex. −5 − 5 2 = −5
x=
y = x 2 + 10 x + 25 = ( −5 ) + 10 ( −5 ) + 25 2
=0 The vertex is ( −5,0 ) . The axis of symmetry is x = −5 .
MHR • Principles of Mathematics 10 Solutions
67
d) y = 9 x 2 − 24 x + 16
0 = ( 3x − 4 )
2
3x − 4 = 0 x=
4 3
The x-intercept is
4 . 3
Find the vertex. 4 4 + x= 3 3 2 4 = 3 y = 9 x 2 − 24 x + 16 2
⎛4⎞ ⎛4⎞ = 9 ⎜ ⎟ − 24 ⎜ ⎟ + 16 ⎝3⎠ ⎝3⎠ =0
⎛4 ⎞ The vertex is ⎜ ,0 ⎟ . ⎝3 ⎠ The axis of symmetry is x =
4 . 3
68 MHR • Principles of Mathematics 10 Solutions
e) For x2 – 2x + 3 = 0, a = 1, b = –2, and c = 3. x= = =
−b ± b 2 − 4ac 2a 2±
( −2 ) − 4 (1)( 3) 2 (1) 2
2 ± −8 2
There are no x-intercepts. Find the vertex. For the x-coordinate, use x = − x=−
b . 2a
−2 2 (1)
=1 y = x2 − 2 x + 3 = 12 − 2 (1) + 3 =2 The vertex is (1,2 ) . The axis of symmetry is x = 1 .
MHR • Principles of Mathematics 10 Solutions
69
f) For –x2 – 3x – 3 = 0, a = –1, b = –3, and c = –3. x= = =
−b ± b 2 − 4ac 2a 3±
( −3)
2
− 4 ( −1)( −3)
2 ( −1)
3 ± −3 −2
There are no x-intercepts. Find the vertex. For the x-coordinate, use x = − x=−
b . 2a
−3 2 ( −1)
= −1.5 y = − x 2 − 3x − 3 = − ( −1.5) − 3 ( −1.5) − 3 2
= −0.75 The vertex is ( −1.5, −0.75 ) . The axis of symmetry is x = −1.5 .
Chapter 6 Section 4
Question 4
Page 300
a) The vertex is at (3, 2). The graph opens upward. There are no x-intercepts. b) The vertex is at (2,4). The graph opens downward. There are two x-intercepts. c) The vertex is at (–4, –5). The graph opens upward. There are two x-intercepts. d) The vertex is at (–3, –1). The graph opens downward. There are no x-intercepts. e) The vertex is at (5, 0). The graph opens upward. There is one x-intercept.
70 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
Question 5
Page 300
a) y = ( x − 3) + 2 2
= x 2 − 6 x + 11 Let y = 0 and use the quadratic formula with a = 1, b = –6, and c = 11. x= = =
−b ± b 2 − 4ac 2a 6±
( −6 )
2
− 4 (1)(11)
2 (1)
6 ± −8 2
There are no x-intercepts.
b) y = − ( x − 2 ) + 4 2
= − x2 + 4 x Factor and solve the corresponding quadratic equation. 0 = − x2 + 4 x 0 = − x ( x − 4) The x-intercepts are 0 and 4.
c) y = 2 ( x + 4 ) − 5 2
= 2 x 2 + 16 x + 27 Let y = 0 and use the quadratic formula with a = 2, b = 16, and c = 27. x= = =
−b ± b2 − 4ac 2a −16 ±
(16 ) − 4 ( 2 )( 27 ) 2 (2) 2
−16 ± 40 4
The x-intercepts are
−16 ± 40 . 4
MHR • Principles of Mathematics 10 Solutions
71
d) y = −2 ( x + 3) − 1 2
= −2 x 2 − 12 x − 19 Let y = 0 and use the quadratic formula with a = –2, b = –12, and c = –19. x= = =
−b ± b 2 − 4ac 2a 12 ±
( −12 )
2
− 4 ( −2 )( −19 )
2 ( −2 )
12 ± −8 −4
There are no x-intercepts.
e) y = ( x − 5) Factor and solve the corresponding quadratic equation. 2
0 = ( x − 5)
2
x −5= 0 x =5 The x-intercept is 5.
72 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
Question 6
Page 301
a) Let h = 0 and use the quadratic formula with a = –0.1, b = 1, and c = 0.5. d= =
−b ± b2 − 4ac 2a −1 ±
( −1)
2
− 4 ( −0.1)( 0.5)
2 ( −0.1)
−1 ± 1.2 −0.2 1 ± 1.2 = 0.2 So, d 10.5 or d –0.5. The positive root is 10.5. The ball has travelled 10.5 m horizontally when it lands on the ground. =
b) 2.6 = −0.1d 2 + d + 0.5 0 = −0.1d 2 + d − 2.1 Use the quadratic formula with a = –0.1, b = 1, and c = –2.1. d= =
−b ± b2 − 4ac 2a −1 ±
( −1)
2
− 4 ( −0.1)( −2.1)
2 ( −0.1)
−1 ± 0.16 −0.2 −1 ± 0.4 = −0.2 So, d = 3 or d = 7. The ball is at a height of 2.6 m at a horizontal distance of 3 m or 7 m. =
MHR • Principles of Mathematics 10 Solutions
73
Chapter 6 Section 4
Question 7
Page 301
a) Let h = 0 and use the quadratic formula with a = –4.9, b = 8.4, and c = 1.5. t= =
−b ± b2 − 4ac 2a −8.4 ±
(8.4 ) − 4 ( −4.9 )(1.5) 2 ( −4.9 ) 2
−8.4 ± 99.96 −0.2 8.4 ± 99.96 = 9.8 So, t –0.2 or t 1.9. The positive root is 1.9. The ball lands on the ground after 1.9 s. =
b) For the t-coordinate of the vertex, use t = −
b . 2a
8.4 2( −4.9) 0.86
t=−
h = −4.9t 2 + 8.4t + 1.5 = −4.9 ( 0.86 ) + 8.4 ( 0.86 ) + 1.5 2
5 The ball reaches a height of 5 m. Chapter 6 Section 4
Question 8
Page 301
Answers will vary.
74 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
Question 9
Page 301
7 x 2 − 12 x = 9
a)
7 x 2 − 12 x − 9 = 0 Use the quadratic formula with a = 7, b = –12, and c = –9. x= = =
−b ± b 2 − 4ac 2a 12 ±
( −12 ) − 4 ( 7 )( −9 ) 2(7) 2
12 ± 396 14
x 2.28 or x –0.56. 4 x 2 = 12 − 13x
b)
4 x 2 + 13x − 12 = 0 Use the quadratic formula with a = 4, b = 13, and c = –12. x= =
−b ± b2 − 4ac 2a −13 ±
(13)
2
− 4 ( 4 )( −12 )
2 (4)
−13 ± 361 8 −13 ± 19 = 8 =
x = 0.75 or x = –4. 4 x 2 = 2.8 x + 4.8
c)
4 x 2 − 2.8 x − 4.8 = 0 Use the quadratic formula with a = 4, b = –2.8, and c = –4.8. x= =
−b ± b2 − 4ac 2a 2.8 ±
( −2.8) − 4 ( 4 )( −4.8) 2 (4) 2
2.8 ± 84.64 8 2.8 ± 9.2 = 8 =
x = 1.5 or x –0.8.
MHR • Principles of Mathematics 10 Solutions
75
x ( 3 x − 8 ) = −1
d)
3x 2 − 8 x + 1 = 0 Use the quadratic formula with a = 3, b = –8, and c = 1. x= = =
−b ± b 2 − 4ac 2a 8±
( −8 ) − 4 ( 3)(1) 2 ( 3) 2
8 ± 52 6
x 2.54 or x 0.13
( x − 3)
e)
2
= −2 ( x + 3)
x − 6 x + 9 = −2 x − 6 2
x 2 − 4 x + 15 = 0 Use the quadratic formula with a = 1, b = –4, and c = 15. x= = =
−b ± b 2 − 4ac 2a 4±
( −4 )
2
− 4 (1)(15 )
2 (1)
4 ± −44 2
There are no real roots.
( x + 3)
f)
2
= ( 2 x + 5 )( 2 x − 5 )
x 2 + 6 x + 9 = 4 x 2 − 25 −3x 2 + 6 x + 34 = 0 Use the quadratic formula with a = –3, b = 6, and c = 34. x= = =
−b ± b 2 − 4ac 2a −6 ±
(6)
2
− 4 ( −3)( 34 )
2 ( −3 )
−6 ± 444 −6
x –2.51 or x 4.51.
76 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4 Question 10 Page 301 Let y = 0 and use the quadratic formula with a = –0.0044, b = 0, and c = 21.3. x= = =
−b ± b 2 − 4ac 2a 0±
(0)
2
− 4 ( −0.0044 )( 21.3)
2 ( −0.0044 )
± 0.37488 −0.0088
The x-intercepts are –69.6 and 69.6. The width of the bridge is 139.2 m. The height of the bridge is 21.3 m. Chapter 6 Section 4
Question 11
Page 301
a) 6 = −4.9t 2 + 8.1t + 3
0 = −4.9t 2 + 8.1t − 3 Use the quadratic formula with a = –4.9, b = 8.1, and c = –3. t= =
−b ± b 2 − 4ac 2a −8.1 ±
(8.1) − 4 ( −4.9 )( −3) 2 ( −4.9 ) 2
−8.1 ± 6.81 −9.8 So, t 0.56 or t 1.09. The rocket first reaches a height of 6 m above the ground at t = 0.56 s. =
b) The rocket falls to a height of 6 m above the ground at 1.09 s. c) The rocket reached its maximum height above the ground at
0.56 + 1.09 , or about 0.83 s. 2
MHR • Principles of Mathematics 10 Solutions
77
Chapter 6 Section 4
Question 12
Page 301
a) 4.2 = 0.2 x 2 − 1.6 x + 4.2
0 = 0.2 x 2 − 1.6 x 0 = 0.2 x ( x − 8 ) So, x = 0 or x = 8. The half-pipe is 8 m wide. b) 2.2 = 0.2 x 2 − 1.6 x + 4.2
0 = 0.2 x 2 − 1.6 x + 2 Use the quadratic formula with a = 0.2, b = –1.6, and c = 2. x= =
−b ± b 2 − 4ac 2a 1.6 ±
( −1.6 ) − 4 ( 0.2 )( 2 ) 2 ( 0.2 ) 2
1.6 ± 0.96 0.4 So, x 6.45 or x 1.55. A skater would have travelled 1.55 m horizontally after a drop of 2 m. =
Chapter 6 Section 4
Question 13
Page 302
The vertex is at (8, 32). Therefore, the width of the arch is 16 m. Chapter 6 Section 4
Question 14
Page 302
a) Let f = 0 and use the quadratic formula with a = 0.0048, b = –0.96, and c = 64. v= = =
−b ± b 2 − 4ac 2a 0.96 ±
( −0.96 ) − 4 ( 0.0048)( 64 ) 2 ( 0.0048 ) 2
0.96 ± −0.3072 0.0096
There are no v-intercepts. b) For the v-coordinate of the vertex, use v = −
b . 2a
−0.96 2(0.0048) = 100
v=−
The speed that minimizes fuel flow is 100 km/h.
78 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
Question 15
Page 302
Solutions for the Achievement Checks are shown in the Teacher Resource. Chapter 6 Section 4
Question 16
Page 302
−b ± b2 − 4ac 14 ± 140 . with x = 2a 4 b = −14
a) Compare x =
2a = 4 a=2
( −14 )
2
− 4 ( 2 ) c = 140 c=7
2 x − 14 x + 7 = 0 2
−b ± b2 − 4ac −11 ± 145 . with x = 6 2a b = 11
b) Compare x =
2a = 6 a =3
(11)
2
− 4 ( 3) c = 145 c = −2
3x + 11x − 2 = 0 2
Chapter 6 Section 4
Question 17
Page 302
a) Three line segments can be drawn joining any two of three points. b) Six line segments can be drawn joining any two of four points, 10 line segments if there are 5 points, and 15 line segments if there are 6 points. c) Following the pattern in b), if there are n points, you can draw
n ( n − 1) 2
segments.
MHR • Principles of Mathematics 10 Solutions
79
n ( n − 1)
= 1000 2 n 2 − 2n − 2000 = 0 Use the quadratic formula with a = 1, b = –2, and c = –2000. d)
n= =
−b ± b 2 − 4ac 2a 2±
( −2 )
2
− 4 (1)( −2000 )
2 (1)
2 ± 8004 2 So, n 45.7 or n –43.7. You need 46 points to have at least 1000 line segments. =
Chapter 6 Section 4
Question 18
Page 302
Answers may vary. For example: Consider the equation x 2 − 6 x + 9 = 0 . When graphed there is one x-intercept at 3. This is also the vertex. There is only one real root.
80 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
x 2 + y 2 = 16
Question 19
Page 302
c
y = x −9 d 2 Substitute x – 9 for y in equation c. x 2 + y 2 = 16 2
x 2 + ( x 2 − 9 ) = 16 2
x 4 − 17 x 2 + 65 = 0 Use the quadratic formula with a = 1, b = –17, and c = 65. x2 = =
−b ± b 2 − 4ac 2a 17 ±
( −17 ) − 4 (1)( 65) 2 (1) 2
17 ± 29 2 So, x 11.19 or x 5.81. x 2 = 11.19 =
x 2 = 5.81
x ±3.35
x ±2.41
y = x −9
y = x2 − 9
2
= 11.19 − 9 = 2.19
= 5.81 − 9 = −3.19
The points of intersection are ( 3.35, 2.19 ) , ( −3.35, 2.19 ) , ( 2.41, −3.19 ) , and ( −2.41, −3.19 ) .
Chapter 6 Section 4
Question 20
Page 302
The possible numbers of intersection points are 0, 1, 2, 3, and 4. Equations will vary.
MHR • Principles of Mathematics 10 Solutions
81
Chapter 6 Section 4
x =1+
Question 21
Page 302
1 x
x2 − x − 1 = 0 Use the quadratic formula with a = 1, b = –1, and c = –1. x= = =
−b ± b 2 − 4ac 2a 1±
( −1)
2
− 4 (1)( −1)
2 (1)
1± 5 2
1+ 5 1− 5 and . 2 2 ⎛ 1 − 5 ⎞⎛ 1 + 5 ⎞ 1 − 5 ⎜⎜ ⎟⎜ ⎟⎟ = ⎟⎜ 4 ⎝ 2 ⎠⎝ 2 ⎠ = −1
The roots are
The roots are negative reciprocals. Chapter 6 Section 4
Question 22
Page 303
a) Use a calculator to evaluate the continued fraction, and express the answer as a fraction:
157 . 68
b) Use a calculator to evaluate the continued fraction for several steps. The answer to three decimal places is 1.618, the golden ratio. Chapter 6 Section 4
Question 23
Page 303
a) The next three terms are 34, 55, and 89. Each term is found by adding the two preceding terms. b) The ratios of terms approach 1.618, the golden ratio.
82 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 4
a–b+c=0 a–c+d=0 a + 2b + 2d = 0 b–d=3
Question 24
Page 303
c d e f
Add equations c and d to obtain 2a − b + d = 1 . g Rearrange equation f: −b + d = −3 . Substitute into equation g. 2a − b + d = 1 2a − 3 = 1
a=2 Substitute a = 2 into equation e. a + 2b + 2d = 0 2 + 2b + 2 d = 0 h b + d = −1 Add equations f and h. f b–d=3 h b + d = −1 2b = 2 f+h b =1 Substitute b = 1 into equation f to determine that d = –2. Substitute a = 2 and b = 1 into equation c. a–b+c=0 2 −1+ c = 0
c = −1 a=2 b =1 c = −1 d = −2
MHR • Principles of Mathematics 10 Solutions
83
Chapter 6 Section 5
Solve Problems Using Quadratic Equations
Chapter 6 Section 5
Question 1
Page 311
a) h = −4.9t 2 + 45t + 2 b) Let h = 0 and use the quadratic formula with a = –4.9, b = 45, and c = 2. t= =
−b ± b 2 − 4ac 2a −45 ±
( 45) − 4 ( −4.9 )( 2 ) 2 ( −4.9 ) 2
−45 ± 2064.2 −9.8 So, t –0.04 or t 9.23. The rocket would take 9.23 s to fall to Earth. =
Chapter 6 Section 5
Question 2
a) For the t-coordinate of the vertex, use t = −
t=−
Page 311
b . 2a
49 2( −4.9)
=5 2 h = −4.9 ( 5 ) + 49 ( 5 ) + 1.5 = 124
The maximum height of the firework is 124 m above the ground. b) 100 = −4.9t 2 + 49t + 1.5
0 = −4.9t 2 + 49t − 98.5 Use the quadratic formula with a = –4.9, b = 49, and c = –98.5. t= =
−b ± b 2 − 4ac 2a −49 ±
( 49 )
2
− 4 ( −4.9 )( −98.5)
2 ( −4.9 )
−49 ± 470.4 −9.8 So, t 2.79 or t 7.21. The firework is more than 100 m above the ground over the time interval 2.79 ≤ t ≤ 7.21 . =
84 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 3
Page 312
x ( x + 16 ) = 35 x + 16 x − 35 = 0 Use the quadratic formula with a = 1, b = 16, and c = –35. 2
x= =
−b ± b 2 − 4ac 2a −16 ±
(16 )
2
− 4 (1) ( −35)
2 (1)
−16 ± 396 2 So, x 1.95 or x –17.95. The width is 1.95 cm and the length is 17.95 cm. =
Chapter 6 Section 5
Question 4
Page 312
x ( x + 1) = 3306 x + x − 3306 = 0 Use the quadratic formula with a = 1, b = 1, and c = –3306. 2
x= =
−b ± b 2 − 4ac 2a −1 ±
(1)
2
− 4 (1)( −3306 )
2 (1)
−1 ± 13 225 2 −1 ± 115 = 2 So, x = 57 or x = –58. The numbers are 57 and 58, or –57 and –58. =
MHR • Principles of Mathematics 10 Solutions
85
Chapter 6 Section 5
Question 5
Page 312
x ( x + 2 ) = 323 x + 2 x − 323 = 0 Use the quadratic formula with a = 1, b = 2, and c = –323. 2
x= =
−b ± b2 − 4ac 2a −2 ±
(2)
2
− 4 (1)( −323)
2 (1)
−2 ± 1296 2 −2 ± 36 = 2 So, x = 17 or x = –19. The numbers are 17 and 19, or –17 and –19. =
Chapter 6 Section 5
( 2 x + 3)
2
= x2 + ( x + 7 )
Question 6
Page 312
2
4 x 2 + 12 x + 9 = x 2 + x 2 + 14 x + 49 2 x 2 − 2 x − 40 = 0 x 2 − x − 20 = 0
( x − 5)( x + 4 ) = 0 So, x = 5 or x = –4. The negative root is inadmissible. The lengths of the sides are 5 cm, 12 cm, and 13 cm. Chapter 6 Section 5
Question 7
Page 312
a)
b) y = −0.05 x 2 + 0.95 x + 0.5
86 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 8
Page 312
V = π r 2h 600 = π r 2 (12 ) 50
π
= r2
r = 4.0 The radius of the cylinder is 40 mm. Chapter 6 Section 5
Question 9
Page 312
1 b ( b + 4 ) = 20 2 b ( b + 4 ) = 40 b2 + 4b − 40 = 0 Use the quadratic formula with a = 1, b = 4, and c = –40. x= =
−b ± b2 − 4ac 2a −4 ±
(4)
− 4 (1)( −40 )
2
2 (1)
−4 ± 176 2 So, x 4.6 or x –8.6. The length of the base is 46 mm. =
Chapter 6 Section 5
Question 10
Page 312
x 2 + ( x + 1) = 365 2
x 2 + x 2 + 2 x + 1 = 365 2 x 2 + 2 x − 364 = 0 x 2 + x − 182 = 0 Use the quadratic formula with a = 1, b = 1, and c = –182. x= =
−b ± b2 − 4ac 2a −1 ±
(1)
2
− 4 (1)( −182 )
2 (1)
−1 ± 729 2 −1 ± 27 = 2 So, x = 13 or x = –14. The integers are 13 and 14 or –13 and –14. =
MHR • Principles of Mathematics 10 Solutions
87
Chapter 6 Section 5
Question 11
Page 312
Perimeter: 2 x + 2 y = 23 Area: xy = 33 Solve for y in the perimeter equation and substitute into the area equation. xy = 33 x (11.5 − x ) = 33 − x + 11.5 x − 33 = 0 Use the quadratic formula with a = –1, b = 11.5, and c = –33. 2
x= =
−b ± b2 − 4ac 2a −11.5 ±
(11.5) − 4 ( −1)( −33) 2 ( −1) 2
−11.5 ± 0.25 −2 −11.5 ± 0.5 = −2 So, x = 5.5 or x = 6. =
One dimension is 6 cm. The other dimension is
33 , or 5.5 cm. 6
Chapter 6 Section 5
Page 312
Question 12
y + 2 x = 1200 y = 1200 − 2 x xy = 180 000 x (1200 − 2 x ) = 180 000 −2 x + 1200 x − 180 000 = 0 Use the quadratic formula with a = –2, b = 1200, and c = –180 000. 2
x= = =
−b ± b 2 − 4ac 2a −1200 ±
(1200 )
2
− 4 ( −2 ) ( −180 000 )
2 ( −2 )
−1200 ± 0 −4
The width is 300 m. The length is 1200 – 2(300), or 600 m.
88 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
x2 + ( x + 2) = ( x + 4) 2
Question 13
Page 313
2
x 2 + x 2 + 4 x + 4 = x 2 + 8 x + 16 x 2 − 4 x − 12 = 0
( x − 6 )( x + 4 ) = 0 So, x = 6 or x = –4. The negative solution is inadmissible. The sides of the triangle measure 6 units, 8 units, and 10 units. Chapter 6 Section 5
Question 14
Page 313
x 2 + (10 x ) = 62 2
101x 2 = 36 36 x2 = 101 x 0.597
The top of the ladder must be placed no higher than 5.97 m.
MHR • Principles of Mathematics 10 Solutions
89
Chapter 6 Section 5
Question 15
Page 313
a) h = −4.9t 2 + 36.85t + 0.61 b) Answers may vary. For example: Let h = 0 and use the quadratic formula with a = –4.9, b = 36.85, and c = 0.61. t= =
−b ± b 2 − 4ac 2a −36.85 ±
( 36.85) − 4 ( −4.9 )( 0.61) 2 ( −4.9 ) 2
−36.85 ± 1369.88 −9.8 So, t –0.02 or t 7.54. The rocket was in the air 7.54 s. =
For the t-coordinate of the vertex, use t = −
b . 2a
36.85 2( −4.9) 3.76 h = −4.9t 2 + 36.85t + 0.61
t=−
= −4.9 ( 3.76 ) + 36.85 ( 3.76 ) + 0.61 2
69.89
The maximum height reached was 69.89 m the time is 3.76 s. c)
90 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 16
Page 313
a) h = −4.9t 2 + 15t + 1 b) h = −4.9t 2 + 15t + 1 = −4.9 (1) + 15 (1) + 1 2
= 11.1
The height of the ball after 1 s is 11.1 m. c) Let h = 0 and use the quadratic formula with a = –4.9, b = 15, and c = 1. t= =
−b ± b 2 − 4ac 2a −15 ±
(15) − 4 ( −4.9 )(1) 2 ( −4.9 ) 2
−15 ± 244.6 −9.8 So, t –0.1 or t 3.1. The ball lands after 3.1 s. =
d) For the t-coordinate of the vertex, use t = −
b . 2a
15 2( −4.9) 1.5 h = −4.9t 2 + 15t + 1
t=−
= −4.9 (1.5) + 15 (1.5) + 1 2
12.5
The ball reached a maximum height of 12.5 m after 1.5 s.
MHR • Principles of Mathematics 10 Solutions
91
e) h = −0.81t 2 + 15t + 1 = −0.81(1) + 15 (1) + 1 2
15.2 The height of the ball after 1 s is 15.2 m.
Let h = 0 and use the quadratic formula with a = –0.81, b = 15, and c = 1. t= =
−b ± b 2 − 4ac 2a −15 ±
(15) − 4 ( −0.81)(1) 2 ( −0.81) 2
−15 ± 228.24 −1.62 So, t –0.1 or t 3.1. The ball lands after 18.6 s. =
For the t-coordinate of the vertex, use t = −
b . 2a
15 2( −0.81) 9.3 h = −0.81t 2 + 15t + 1
t=−
= −0.81( 9.3) + 15 ( 9.3) + 1 2
70.4
The ball reached a maximum height of 70.4 m after 9.3 s.
92 MHR • Principles of Mathematics 10 Solutions
f) h = −11.55t 2 + 15t + 1 = −11.55 (1) + 15 (1) + 1 2
4.5 The height of the ball after 1 s is 4.5 m.
Let h = 0 and use the quadratic formula with a = –11.55, b = 15, and c = 1. t= =
−b ± b 2 − 4ac 2a −15 ±
(15) − 4 ( −11.55)(1) 2 ( −11.55) 2
−15 ± 271.2 −23.1 So, t –0.1 or t 1.4. The ball lands after 1.4 s. =
For the t-coordinate of the vertex, use t = −
b . 2a
15 2( −11.55) 0.65 h = −11.55t 2 + 15t + 1
t=−
= −11.55 ( 0.65 ) + 15 ( 0.65 ) + 1 2
= 5.9
The ball reached a maximum height of 5.9 m after 0.6 s.
MHR • Principles of Mathematics 10 Solutions
93
Chapter 6 Section 5
Question 17
Page 313
a) R = (10 − 0.5 x )( 30 + 2 x ) , where x represents the number of price reductions. b)
R = (10 − 0.5 x )( 30 + 2 x ) 150 = 300 + 5 x − x 2 0 = 150 + 5 x − x 2
0 = (15 − x )(10 + x ) So, x = 15 or x = –10. The revenue will be $150 after 15 price reductions. The price is 10 − 15 ( 0.5) , or $2.50.
c) R = (10 − 0.5 x )( 30 + 2 x ) 0 = 300 + 5 x − x 2 0 = ( 20 − x )(15 + x ) So, x = 20 or x = –15.
The x-intercepts are –15 and 20. The x-coordinate of the vertex is
−15 + 20 , or 2.5. 2
The maximum revenue occurs after 2.5 price reductions. The price is 10 − 2.5 ( 0.5) , or $8.75. d) Her revenue will be $0 at a price of $0. e)
Part b) is represented by the point (15, 150). Part c) is represented by the vertex (2.5, 306.25), which is the maximum point. Part d) is represented by the x-intercept 20.
94 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 18
Page 313
( 30 + 2 x )( 20 + 2 x ) = 1064 600 + 100 x + 4 x 2 = 1064 4 x 2 + 100 x − 464 = 0 x 2 + 25 x − 116 = 0
( x − 4 )( x + 29 ) = 0 So, x = 4 or x = –29. The negative answer is inadmissible. The new frame measures 28 cm by 38 cm. Chapter 6 Section 5
Question 19
Page 313
( 24 + 2 x )(15 + 2 x ) = 1.5 (15)( 24 ) 360 + 78 x + 4 x 2 = 540 4 x 2 + 78 x − 180 = 0 2 x 2 + 39 x − 90 = 0 Use the quadratic formula with a = 2, b = 39, and c = –90. x= =
−b ± b 2 − 4ac 2a −39 ±
( 39 )
2
− 4 ( 2 )( −90 )
2 (2)
−39 ± 2241 4 So, x 2.1 or x –21.6. The negative answer is inadmissible. The new dimensions are 19.2 m and 28.2 m. =
MHR • Principles of Mathematics 10 Solutions
95
Chapter 6 Section 5
Question 20
Page 313
w ( 3w + 2 ) = 1496 3w + 2 w − 1496 = 0 Use the quadratic formula with a = 3, b = 2, and c = –1496. 2
w= =
−b ± b 2 − 4ac 2a −2 ±
(2)
2
− 4 ( 3)( −1496 )
2 ( 3)
−2 ± 17 956 6 −2 ± 134 = 6 So, w = 22 or w –22.7. The negative answer is inadmissible. The width of the field is 22 m and the length is 68 m. =
96 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 21
Page 314
a)
b) ( 40 − 2 x )( 50 − 2 x ) = 875 2000 − 180 x + 4 x 2 = 875 4 x 2 − 180 x + 1125 = 0 Use the quadratic formula with a = 4, b = –180, and c = 1125. x= =
−b ± b2 − 4ac 2a 180 ±
( −180 ) − 4 ( 4 )(1125) 2 (4) 2
180 ± 14 400 8 180 ± 120 = 8 So, x = 37.5 or x = 7.5. The side length of the squares being removed is 7.5 cm. =
c) V = 875 × x
= 875 ( 7.5 ) = 6562.5 The volume of the box is 6562.5 cm2.
MHR • Principles of Mathematics 10 Solutions
97
Chapter 6 Section 5
Question 22
Page 314
( 21 − 2 x )(15 − 2 x ) = 216 315 − 72 x + 4 x 2 = 216 4 x 2 − 72 x + 99 = 0 Use the quadratic formula with a = 4, b = –72, and c = 99.
x= =
−b ± b2 − 4ac 2a 72 ±
( −72 ) − 4 ( 4 )( 99 ) 2 (4) 2
72 ± 3600 8 72 ± 60 = 8 So, x = 79.5 or x = 1.5. The width of the cut is 1.5 cm. =
Chapter 6 Section 5
Question 23
Page 314
Question 24
Page 314
( 20 − x )(16 − x ) = 0.6 ( 20 )(16 ) 320 − 36 x + x 2 = 192 x 2 − 36 x + 128 = 0
( x − 4 )( x − 32 ) = 0 So, x = 4 or x = 32. The width of the cut is 4 cm. Chapter 6 Section 5
1 2 2 300 − 35 x + x = 150
( 20 − x )(15 − x ) = ( 20 )(15) x 2 − 35 x + 150 = 0
( x − 5)( x − 30 ) = 0 So, x = 5 or x = 30. The reduction is 5 m. The dimensions of the fenced-in area are 10 m by 15 m.
98 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 25
Page 314
Answers will vary. For example: Set the vertex 23 cm below the origin. The parabola opens upward. y = ax 2 − 23 0 = a ( 300 ) − 23 2
23 90 000 23 y= x 2 − 23 90 000
a=
Chapter 6 Section 5
Question 26
Page 314
a)
b) y = 0.008 x 2 − 0.383x + 8.726 c) Using the equation from part b), the stopping distance for a speed of 110 km/h is 63.4 m. d) Use the equation from part b) and the quadratic formula. A speed of 81 km/h results in a stopping distance of 30 m. A speed of 111 km/h results in a stopping distance of 65 m. A speed of 180 km/h results in a stopping distance of 200 m. e) Answers may vary. For example: The model does not make sense for speeds less than 24.5 km/h because the stopping distances should be less when the car is going slower.
MHR • Principles of Mathematics 10 Solutions
99
Chapter 6 Section 5
Question 27
Page 314
a) x 2 + 2 x + 7 = x 2 − 4 x − 1 6 x = −7
There is one point of intersection because the resulting equation is linear. b) 3x 2 − 12 x + 16 = −2 x 2 − 4 x + 3
5 x 2 − 8 x + 13 = 0 Use the quadratic formula. x= =
−b ± b 2 − 4ac 2a 8±
( −8 )
2
− 4 ( 5)(13)
2 ( 5)
8 ± −196 10 There are no points of intersection because the resulting quadratic equation has no real roots. =
x 2 − 6 x + 10 = 5 x 2 − 30 x + 46
c)
−4 x 2 + 24 x − 36 = 0 Use the quadratic formula. x= =
−b ± b2 − 4ac 2a −24 ±
( 24 )
2
− 4 ( −4 )( −36 )
2 ( −4 )
−24 ± 0 −8 There is one point of intersection because the resulting quadratic equation has two equal real roots. =
Chapter 6 Section 5
Question 28
Page 315
a) WC = 0.0032w2 − 0.425w + 6 , where WC represents the wind chill temperature and w represents the wind speed. b) The QuadReg operation results in a linear relation, since the coefficient of the x2-term is 0. WC = t − 13 , where WC represents the wind chill temperature and t represents the air temperature. c) Answers may vary. For example: The wind chill model from part b) is very good, because the data follow a linear model exactly. The model from part a) is quite good because the result for w = 60 is very close to the actual result.
100 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Section 5
Question 29
Page 315
Answers will vary. For example: If the initial speed is in a diagonal direction, only the component that is vertical is affected by gravity. Chapter 6 Section 5 Question 30 Solve two equations with two unknowns.
Page 315
Using the maximum height reached, the equation will be of the form y = a ( x − h ) + 14 . Use the two points (0, 4) and (24, 0). 2 4 = a ( 0 − h ) + 14 2 0 = a ( 24 − h ) + 14 2 −10 = a ( 0 − h ) 2 −14 = a ( 24 − h ) −10 = ah 2 −10 =a c −14 = a ( 576 − 48h + h 2 ) d 2 h 2
Substitute the expression for a from equation c into equation d. −14 = a ( 576 − 48h + h 2 ) ⎛ −10 ⎞ −14 = ⎜ 2 ⎟ ( 576 − 48h + h 2 ) ⎝ h ⎠ 2 −14h = −5760 + 480h − 10h 2 −4h 2 − 480h + 5760 = 0 h 2 + 120h − 1440 = 0 Use the quadratic formula. h= =
−b ± b2 − 4ac 2a −120 ±
( −120 ) − 4 (1)( −1440 ) 2 (1) 2
−120 ± 20 160 2 So, h –131 or h 11. =
Substitute h = 11 into equation c. −10 =a 112 10 a=− 121
MHR • Principles of Mathematics 10 Solutions
101
Now , use the equation y = −
10 2 ( x − 11) + 14 with h = 10. 121
10 2 ( x − 11) + 14 121 1210 = −10 x 2 + 220 x − 1210 + 1694 10 = −
10 x 2 − 220 x + 726 = 0 Use the quadratic formula. x= =
−b ± b 2 − 4ac 2a 220 ±
( −220 ) − 4 (10 )( 726 ) 2 (10 ) 2
220 ± 19 360 20 So, x 4 or x 18. The pumpkin was at a height of 10 m at horizontal distances of 4 m and 18 m. =
Chapter 6 Section 5
Question 31
Page 315
Use a calculator to verify the formula. f1 = 1 f2 = 1 f3 = 2 f4 = 3 f5 = 5
102 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Review Chapter 6 Review
Question 1
Page 316
a) y = x 2 + 8 x − 7
= ( x2 + 8x ) − 7
= ( x 2 + 8 x + 42 − 42 ) − 7 = ( x 2 + 8 x + 42 ) − 42 − 7 = ( x + 4 ) − 23 2
MHR • Principles of Mathematics 10 Solutions
103
b) y = x 2 + 2 x + 7
= ( x2 + 2x ) + 7
= ( x 2 + 2 x + 12 − 12 ) + 7 = ( x 2 + 2 x + 12 ) − 12 + 7 = ( x + 1) + 6 2
104 MHR • Principles of Mathematics 10 Solutions
c) y = x 2 + 4 x + 6
= ( x2 + 4 x ) + 6
= ( x 2 + 4 x + 22 − 22 ) + 6 = ( x 2 + 4 x + 22 ) − 22 + 6 = ( x + 2) + 2 2
MHR • Principles of Mathematics 10 Solutions
105
d) y = x 2 + 6 x − 3
= ( x2 + 6x ) − 3
= ( x 2 + 6 x + 32 − 32 ) − 3 = ( x 2 + 6 x + 32 ) − 32 − 3 = ( x + 3) − 12 2
106 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Review
Question 2
Page 316
a) y = x 2 + 12 x + 30
= ( x 2 + 12 x ) + 30
= ( x 2 + 12 x + 62 − 62 ) + 30 = ( x 2 + 12 x + 62 ) − 62 + 30 = ( x + 6) − 6 2
The vertex is (–6, –6).
b) y = x 2 − 14 x + 50
(
)
= x 2 − 14 x + 50
( = (x
)
= x 2 − 14 x + ( −7 ) − ( −7 ) + 50 2
2
2
)
− 14 x + ( −7 ) − ( −7 ) + 50 2
2
= ( x − 7) + 1 2
The vertex is (7, 1).
c) y = − x 2 + 6 x − 7
(
)
= − x2 − 6x − 7
( = −(x
)
= − x 2 − 6 x + ( −3) − ( −3) − 7 2
2
2
)
− 6 x + ( −3) − ( −1)( −3) − 7 2
2
= − ( x − 3) + 2 2
The vertex is (3, 2).
MHR • Principles of Mathematics 10 Solutions
107
d) y = 5 x 2 − 40 x + 76
(
)
= 5 x 2 − 8 x + 76
( = 5( x
)
= 5 x 2 − 8 x + ( −4 ) − ( −4 ) + 76 2
2
)
− 8 x + ( −4 ) − 5 ( −4 ) + 76 2
2
2
= 5( x − 4) − 4 2
The vertex is (4, –4).
Chapter 6 Review
Question 3
Page 316
a) The minimum point is at (0.6, 7.3). b) The maximum point is at (0.2, –200.1). c) The minimum point is at (0.2, 0.6). Chapter 6 Review
Question 4
Page 316
a) x 2 + 10 x + 21 = 0
( x + 3)( x + 7 ) = 0 x + 3 = 0 or x + 7 = 0 x = −3 or x = −7 Check by substituting both solutions in the original equation. For x = –3: For x = –7: R.S. = 0 L.S. = x 2 + 10 x + 21 L.S. = x 2 + 10 x + 21 = ( −3) + 10 ( −3) + 21
= ( −7 ) + 10 ( −7 ) + 21
=0
=0
2
2
L.S. = R.S.
The roots are –3 and –7.
108 MHR • Principles of Mathematics 10 Solutions
L.S. = R.S.
R.S. = 0
m 2 + 8m − 20 = 0
b)
( m − 2 )( m + 10 ) = 0 m−2=0 m=2
or m + 10 = 0 or m = −10
Check by substituting both solutions in the original equation. For m = 2: For m = –10: R.S. = 0 L.S. = m 2 + 8m − 20 L.S. = m 2 + 8m − 20
R.S. = 0
= ( 2 ) + 8 ( 2 ) − 20
= ( −10 ) + 8 ( −10 ) − 20
=0
=0
2
2
L.S. = R.S. The roots are 2 and –10.
L.S. = R.S.
c)
6 y 2 + 21 y + 9 = 0
Divide both sides by 3.
2y + 7y + 3 = 0 2
2y + 6y + y + 3 = 0 2
(2 y
2
+ 6 y ) + ( y + 3) = 0
2 y ( y + 3 ) + 1 ( y + 3) = 0
( y + 3)( 2 y + 1) = 0 y+3=0
or 2 y + 1 = 0
y = −3 or
y=−
1 2
Check by substituting both solutions in the original equation. 1 For y = –3: For y = − : 2 R.S. = 0 L.S. = 6 y 2 + 21y + 9 L.S. = 6 y 2 + 21 y + 9 = 6 ( −3) + 21( −3) + 9 2
=0
L.S. = R.S.
The roots are –3 and –
R.S. = 0
2
⎛ 1⎞ ⎛ 1⎞ = 6 ⎜ − ⎟ + 21⎜ − ⎟ + 9 ⎝ 2⎠ ⎝ 2⎠ =0 L.S. = R.S.
1 . 2
MHR • Principles of Mathematics 10 Solutions
109
5n 2 + 13n − 6 = 0
d)
5n 2 + 15n − 2n − 6 = 0
(5n
2
)
+ 15n + ( −2n − 6 ) = 0
5n ( n + 3) − 2 ( n + 3) = 0
( n + 3)( 5n − 2 ) = 0 n+3=0
or 5n − 2 = 0 2 n = −3 or n= 5
Check by substituting both solutions in the original equation. 2 For n = –3: For n = : 5 2 R.S. = 0 L.S. = 5n 2 + 13n − 6 L.S. = 5n + 13n − 6 = 5 ( −3) + 13 ( −3) − 6 2
=0
⎛2⎞ ⎛2⎞ = 5 ⎜ ⎟ + 13 ⎜ ⎟ − 6 ⎝5⎠ ⎝5⎠ =0
L.S. = R.S.
The roots are –3 and
2
2 . 5
110 MHR • Principles of Mathematics 10 Solutions
L.S. = R.S.
R.S. = 0
Chapter 6 Review
Question 5
Page 316
y2 = 8 y + 9
a)
y2 − 8 y − 9 = 0
( y + 1)( y − 9 ) = 0 y + 1 = 0 or y − 9 = 0 y = −1 or y=9
x 2 − 8 x = −7
b)
x2 − 8x + 7 = 0
( x − 1)( x − 7 ) = 0 x −1 = 0
or x − 7 = 0
x =1
or
x=7
3m 2 = −10m − 7
c)
3m 2 + 10m + 7 = 0 3m 2 + 3m + 7 m + 7 = 0
( 3m
2
)
+ 3m + ( 7 m + 7 ) = 0
3m ( m + 1) + 7 ( m + 1) = 0
( m + 1)( 3m + 7 ) = 0 m +1 = 0
or 3m + 7 = 0
m = −1 or d)
m=−
7 3
30 x − 25 x 2 = 9 25 x 2 − 30 x + 9 = 0
( 5 x − 3)
2
=0
5x − 3 = 0 3 x= 5
MHR • Principles of Mathematics 10 Solutions
111
8k 2 = −5 + 14k
e)
8k 2 − 14k + 5 = 0 8k 2 − 4k − 10k + 5 = 0
(8k
2
)
− 4k + ( −10k + 5) = 0
4k ( 2k − 1) − 5 ( 2k − 1) = 0
( 2k − 1)( 4k − 5) = 0 2k − 1 = 0 or 4k − 5 = 0 1 5 k= or k= 2 4 3 x 2 + 2 = −5 x
f)
3x 2 − 5 x + 2 = 0 3x 2 + 3x + 2 x + 2 = 0
( 3x
2
)
+ 3x + ( 2 x + 2 ) = 0
3 x ( x + 1) + 2 ( x + 1) = 0
( x + 1)( 3x + 2 ) = 0 x +1 = 0
or 3x + 2 = 0
x = −1 or Chapter 6 Review
( 3x + 1)
2
= x 2 + ( 3x − 1)
x=−
2 3
Question 6
Page 316
2
9 x2 + 6x + 1 = x2 + 9 x2 − 6x + 1 − x 2 + 12 x = 0 x 2 − 12 x = 0 x ( x − 12 ) = 0 x=0 or x − 12 = 0
or x = 12 The side lengths are 12 cm, 35 cm, and 37 cm.
112 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Review
Question 7
Page 316
a) Factor and solve the corresponding quadratic equation. y = x 2 + 8 x + 12
0 = ( x + 2 )( x + 6 ) The x-intercepts are –2 and –6. Find the x-coordinate of the vertex, and then, the ycoordinate. −2 − 6 x= 2 = −4 y = x 2 + 8 x + 12 = ( −4 ) + 8 ( −4 ) + 12 2
= −4 The vertex is ( −4, −4 ) . b) Factor and solve the corresponding quadratic equation. y = x2 − 4 x − 5
0 = ( x + 1)( x − 5) The x-intercepts are –1 and 5. Find the x-coordinate of the vertex, and then, the ycoordinate. −1 + 5 x= 2 =2 y = x2 − 4 x − 5 = ( 2) − 4 ( 2) − 5 2
= −9 The vertex is ( 2, −9 ) .
MHR • Principles of Mathematics 10 Solutions
113
c) Factor and solve the corresponding quadratic equation. y = − x 2 − 6 x + 27
0 = − ( x 2 + 6 x − 27 ) 0 = − ( x + 9 )( x − 3) The x-intercepts are –9 and 3. Find the x-coordinate of the vertex, and then, the ycoordinate. −9 + 3 x= 2 = −3 y = − x 2 − 6 x + 27 = − ( −3) − 6 ( −3) + 27 2
= 36 The vertex is ( −3,36 ) .
114 MHR • Principles of Mathematics 10 Solutions
d) Factor and solve the corresponding quadratic equation. y = 3 x 2 + 10 x + 8 0 = 3x 2 + 6 x + 4 x + 8
(
)
0 = 3x 2 + 6 x + ( 4 x + 8 ) 0 = 3x ( x + 2 ) + 4 ( x + 2 ) 0 = ( x + 2 )( 3 x + 4 ) x + 2 = 0 or 3x + 4 = 0
x = −2
or
x=−
4 3
The x-intercepts are –2 and –
4 . 3
Find the x-coordinate of the vertex, and then, the y-coordinate. 4 −2 − 3 x= 2 5 =− 3 y = 3 x 2 + 10 x + 8 2
⎛ 5⎞ ⎛ 5⎞ = 3 ⎜ − ⎟ + 10 ⎜ − ⎟ + 8 ⎝ 3⎠ ⎝ 3⎠ 1 =− 3
⎛ 5 1⎞ The vertex is ⎜ − , − ⎟ . ⎝ 3 3⎠
MHR • Principles of Mathematics 10 Solutions
115
e) Factor and solve the corresponding quadratic equation. y = − x 2 − 3x
0 = − x ( x + 3) The x-intercepts are 0 and –3. Find the x-coordinate of the vertex, and then, the ycoordinate. 0−3 x= 2 3 =− 2 y = − x 2 − 3x + 12 2
⎛ 3⎞ ⎛ 3⎞ = − ⎜ − ⎟ − 3⎜ − ⎟ ⎝ 2⎠ ⎝ 2⎠ 9 = 4
⎛ 3 9⎞ The vertex is ⎜ − , ⎟ . ⎝ 2 4⎠ f) Factor and solve the corresponding quadratic equation. y = x2 − 4
0 = ( x + 2 )( x − 2 ) The x-intercepts are –2 and 2. Find the x-coordinate of the vertex, and then, the ycoordinate. −2 + 2 x= 2 =0 y = x2 − 4 = ( 0) − 4 2
= −4 The vertex is ( 0, −4 ) . Chapter 6 Review
Question 8
Page 316
If two different quadratic relations have the same zeros, they will have the same axis of symmetry because it will pass through the midpoint of the line segment connecting the x-intercepts. However, the vertex can be different because vertical stretching or compressing will change the y-coordinate of the vertex but not the zeros.
116 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Review
Question 9
Page 316
a) k = 20 or –20; y = x 2 + 20 x + 100 or y = x 2 − 20 x + 100 b) k = –49; y = −4 x 2 + 28 x − 49 Chapter 6 Review
Question 10
Page 316
a) For –3x2 – 2x + 5 = 0, a = –3, b = –2, and c = 5.
x= =
−b ± b2 − 4ac 2a 2±
( −2 ) − 4 ( −3)(5) 2 ( −3) 2
2 ± 64 −6 2±8 = −6 =
5 The roots are 1 and − . 3 b) For 9x2 – 8x – 3 = 0, a = 9, b = –8, and c = –3.
x= =
−b ± b 2 − 4ac 2a 8±
( −8)
2
− 4 ( 9 )( −3)
2 (9)
8 ± 172 18 8 ± 2 43 = 18 4 ± 43 = 9 =
The roots are
4 + 43 4 − 43 and . 9 9
MHR • Principles of Mathematics 10 Solutions
117
c) For 5x2 + 7x + 1 = 0, a = 5, b = 7, and c = 1. x= = =
−b ± b2 − 4ac 2a −7 ±
( 7 ) − 4 ( 5)(1) 2 ( 5) 2
−7 ± 29 10
The roots are
−7 + 29 −7 − 29 and . 10 10
d) For 25x2 + 90x + 81 = 0, a = 25, b = 90, and c = 81.
x= =
−b ± b 2 − 4ac 2a −90 ±
( 90 ) − 4 ( 25)(81) 2 ( 25 ) 2
−90 ± 0 50 9 =− 5 =
9 The root is − . 5 Chapter 6 Review
Question 11
Page 317
d = 0.0034 s 2 + 0.004 s − 0.3 125 = 0.0034 s 2 + 0.004 s − 0.3 0 = 0.0034 s 2 + 0.004 s − 125.3 Use the quadratic formula with a = 0.0034, b = 0.004, and c = –125.3. s= =
−b ± b2 − 4ac 2a −0.004 ±
( 0.004 ) − 4 ( 0.0034 )( −125.3) 2 ( 0.0034 ) 2
−0.004 ± 1.704 0.0068 So, s 191.4 or s –192.6. The speed required for the ball to fly 125 m is 191.4 km/h. =
118 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Review
Question 12
Page 317
a) h = −4.9t 2 + 4t + 3 b) h = −4.9t 2 + 4t + 3
0 = −4.9t 2 + 4t + 3 Use the quadratic formula with a = –4.9, b = 4, and c = 3. t= =
−b ± b 2 − 4ac 2a −4 ±
( 4 ) − 4 ( −4.9 )( 3) 2 ( −4.9 ) 2
−4 ± 74.8 −9.8 So, t –0.47 or t 1.29. The diver enters the water after 1.29 s. =
h = −4.9t 2 + 4t + 3
c)
3.5 = −4.9t 2 + 4t + 3 0 = −4.9t 2 + 4t − 0.5 Use the quadratic formula with a = –4.9, b = 4, and c = –0.5. t= =
−b ± b 2 − 4ac 2a −4 ±
(4)
2
− 4 ( −4.9 )( −0.5)
2 ( −4.9 )
−4 ± 6.2 −9.8 So, t 0.15 or t 0.66. =
The height of the diver is greater than 3.5 m above the water over the interval 0.15 ≤ t ≤ 0.66 .
MHR • Principles of Mathematics 10 Solutions
119
Chapter 6 Review
Question 13
Page 317
( 5 + 2 x )( 7 + 2 x ) = 2 ( 5 )( 7 ) 35 + 24 x + 4 x 2 = 70 4 x 2 + 24 x − 35 = 0 Use the quadratic formula with a = 4, b = 24, and c = –35.
x= =
−b ± b2 − 4ac 2a −24 ±
( 24 )
2
− 4 ( 4 )( −35)
2 (4)
−24 ± 1136 8 = 1.2 So, x 1.2 or x –7.2. Each dimension of the garden should be extended by 2.4 m. =
Chapter 6 Review
Question 14
Page 317
a) R = ( 6 + x )( 4 − 0.25 x ) , where R is the revenue in dollars, and x is the number of price reductions. b) R = ( 6 + x )( 4 − 0.25 x ) 30 = 24 + 2.5 x − 0.25 x 2 0 = −6 + 2.5 x − 0.25 x 2 Use the quadratic formula with a = –0.25, b = 2.5, and c = –6.
x= =
−b ± b2 − 4ac 2a −2.5 ±
( 2.5) − 4 ( −0.25)( −6 ) 2 ( −0.25) 2
−2.5 ± 0.25 −0.5 −2.5 ± 0.5 = −0.5 So, x = 4 or x = 6. Either 4 or 6 price reductions will result in revenue of $30 per customer. =
120 MHR • Principles of Mathematics 10 Solutions
c) For the x-coordinate of the vertex, use x = −
x=−
b . 2a
2.5 2( −0.25)
=5 R = ( 6 + x )( 4 − 0.25 x ) = ( 6 + 5 )( 4 − 0.25 × 5 ) = 30.25 The maximum predicted revenue per customer is $30.25 at 5 price reductions.
MHR • Principles of Mathematics 10 Solutions
121
Chapter 6 Chapter Test Chapter 6 Chapter Test
Question 1
Page 318
a) y = x 2 + 6 x + 4
= ( x2 + 6x ) + 4
= ( x 2 + 6 x + 32 − 32 ) + 4 = ( x 2 + 6 x + 32 ) − 32 + 4 = ( x + 3) − 5 2
The vertex is (–3, –5). b) y = − x 2 + 8 x − 3
(
)
= − x2 − 8x − 3
( = −(x
)
= − x 2 − 8 x + ( −4 ) − ( −4 ) − 3 2
2
2
)
− 8 x + 16 ( −4 ) − ( −1)( −4 ) − 3 2
2
= − ( x − 4 ) + 13 2
The vertex is (4, 13).
c) y = 3x 2 + 24 x + 10
= 3 ( x 2 + 8 x ) + 10
= 3 ( x 2 + 8 x + 42 − 42 ) + 10
= 3 ( x 2 + 8 x + 4 2 ) − 3 ( 4 2 ) + 10 = 3 ( x + 4 ) − 38 2
The vertex is (–4, –38).
122 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 2
Page 318
x2 − 5x + 4 = 0
a)
( x − 1)( x − 4 ) = 0 x − 1 = 0 or x − 4 = 0 x = 1 or x=4 9 y2 −1 = 0
b)
( 3 y + 1)( 3 y − 1) = 0 3y +1 = 0 y=−
or 3 y − 1 = 0 1 or 3
y=
1 3
x 2 = 3 x + 10
c)
x 2 − 3x − 10 = 0
( x − 5)( x + 2 ) = 0 x − 5 = 0 or x + 2 = 0 x = 5 or x = −2 d) 9b 2 − 12b + 4 = 0
( 3b − 2 )
2
=0
3b − 2 = 0 2 b= 3 e)
3x 2 + 13x = 10 3x 2 + 13x − 10 = 0 3x 2 + 15 x − 2 x − 10 = 0
( 3x
2
+ 15 x ) + ( −2 x − 10 ) = 0
3 x ( x + 5) − 2 ( x + 5) = 0
( x + 5)( 3x − 2 ) = 0 x+5= 0
or 3 x − 2 = 0 2 x = −5 or x= 3
MHR • Principles of Mathematics 10 Solutions
123
f) 6m 2 + 30m = 0
6m ( m + 5) = 0 m + 5 = 0 or 6m = 0 m = −5 or m = 0 g)
5 x 2 = 10 x 5 x 2 − 10 x = 0 5x ( x − 2 ) = 0 x − 2 = 0 or 5x = 0 x = 2 or x=0
h)
4d + 1 = −4d 2 4d 2 + 4d + 1 = 0
( 2d + 1)
2
=0
2d + 1 = 0 d =−
1 2
Chapter 6 Chapter Test
Question 3
Page 318
Answers may vary. For example: Use factoring to find the x-intercepts. Then, find the mean of the x-intercepts to find the x-coordinate of the vertex. Next, substitute this value into the relation to find the corresponding y-coordinate of the vertex. Examples will vary.
124 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test Question 4 Page 318 Factor and solve the corresponding quadratic equation. a) y = x 2 + 2 x − 35
0 = ( x + 7 )( x − 5) The x-intercepts are –7 and 5. Find the x-coordinate of the vertex, and then, the ycoordinate. −7 + 5 x= 2 = −1 y = x 2 + 2 x − 35 = ( −1) + 2 ( −1) − 35 2
= −36 The axis of symmetry is x = –1. The vertex is (–1, –36). b) y = − x 2 − x + 20
0 = − ( x 2 + x − 20 ) 0 = − ( x + 5)( x − 4 ) The x-intercepts are –5 and 4. Find the x-coordinate of the vertex, and then, the ycoordinate. −5 + 4 x= 2 = −0.5 y = − x 2 − x + 20 = − ( −0.5) − ( −0.5) + 20 2
= 20.25 The axis of symmetry is x = –0.5. The vertex is (–0.5, 20.25).
MHR • Principles of Mathematics 10 Solutions
125
c) y = −3x 2 − 6 x
0 = −3x ( x + 2 ) The x-intercepts are 0 and –2. Find the x-coordinate of the vertex, and then, the ycoordinate. −2 + 0 x= 2 = −1 y = −3x 2 − 6 x = −3 ( −1) − 6 ( −1) 2
=3 The axis of symmetry is x = –1. The vertex is (–1, 3). d) y = x 2 − 10 x + 25
0 = ( x − 5) The x-intercept is 5. 2
Find the x-coordinate of the vertex, and then, the ycoordinate. 5+5 x= 2 =5 y = x 2 − 10 x + 25 = ( 5) − 10 ( 5) + 25 2
=0 The axis of symmetry is x = 5. The vertex is (5, 0).
126 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 5
Page 318
a) For 4x2 – 11x – 3 = 0, a = 4, b = –11, and c = –3. −b ± b 2 − 4ac 2a
x= =
11 ±
( −11) − 4 ( 4 )( −3) 2 ( 4) 2
11 ± 169 8 11 ± 13 = 8 =
1 The roots are 3 and − . 4 x2 + 5x = 7
b)
x2 + 5x − 7 = 0 For x2 + 5x – 7 = 0, a = 1, b = 5, and c = –7. x= = =
−b ± b 2 − 4ac 2a −5 ±
( 5)
2
− 4 (1)( −7 )
2 (1)
−5 ± 53 2
The roots are
−5 + 53 −5 − 53 and . 2 2
c) 9 x 2 = 30 x − 25
9 x 2 − 30 x + 25 = 0 For 9x2 – 30x + 25 = 0, a = 9, b = –30, and c = 25. x= =
−b ± b 2 − 4ac 2a 30 ±
( −30 ) − 4 ( 9 )( 25 ) 2 (9) 2
30 ± 0 18 5 = 3 5 The root is . 3 =
MHR • Principles of Mathematics 10 Solutions
127
d) For 7k2 – 9k + 3 = 0, a = 7, b = –9, and c = 3. k= = =
−b ± b 2 − 4ac 2a 9±
( −9 )
2
− 4 ( 7 )( 3)
2(7)
9 ± −3 14
There are no real roots. 4s 2 − 9s = −3
e)
4s 2 − 9s + 3 = 0 For 4s2 – 9s + 3 = 0, a = 4, b = –9, and c = 3. s= = =
−b ± b 2 − 4ac 2a 9±
( −9 ) − 4 ( 4 )( 3) 2 (4) 2
9 ± 33 8
The roots are
9 + 33 9 − 33 3 and . 8 8
3t 2 − 7 = t
f)
3t 2 − t − 7 = 0 For 3t2 – t – 7 = 0, a = 3, b = –1, and c = –7. t= = =
−b ± b 2 − 4ac 2a 1±
( −1)
2
− 4 ( 3)( −7 )
2 ( 3)
1 ± 85 6
The roots are
1 + 85 1 − 85 and . 6 6
128 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 6
Page 318
a) Use the quadratic formula with a = 3, b = 12, and c = 6.
x= =
−b ± b2 − 4ac 2a
(12 ) − 4 ( 3)( 6 ) 2 ( 3) 2
−12 ±
−12 ± 72 6 −12 ± 3 8 = 6 −4 ± 8 = 2 −4 + 8 −4 − 8 The roots are and . 2 2 =
b) Use the quadratic formula with a = 1, b = –8, and c = 3. x= = =
−b ± b 2 − 4ac 2a 8±
( −8 )
2
− 4 (1)( 3)
2 (1)
8 ± 52 2 8 + 52 8 − 52 and . 2 2
The roots are
c) Use the quadratic formula with a = 4, b = 0, and c = –10. m= = =
−b ± b 2 − 4ac 2a 0±
( 0)
2
− 4 ( 4 )( −10 )
2 ( 4)
± 160 8
The roots are
+ 160 − 160 and . 8 8
MHR • Principles of Mathematics 10 Solutions
129
−5 x 2 + 10 x = 5
d)
−5 x 2 + 10 x − 5 = 0
(
)
−5 x 2 − 2 x + 1 = 0 −5 ( x − 1) = 0 2
x −1 = 0 x =1 The root is 1.
( k − 5)
e)
2
= 16
k 2 − 10k + 25 = 16 k 2 − 10k + 9 = 0
( k − 1)( k − 9 ) = 0 The roots are 1 and 9. f)
x2 1 +x+ =0 2 2 2 x + 2x + 1 = 0
( x + 1)
2
=0
The root is –1. 2 ( m − 1) = ( m + 2 )( m + 1) 2
g)
2m 2 − 4m + 2 = m 2 + 3m + 2 m2 − 7m = 0 m (m − 7) = 0 The roots are 0 and 7. h) ( 5 x + 2 )( 3 x − 1) = 4 x 2 + 5 15 x 2 + x − 2 = 4 x 2 + 5 11x 2 + x − 7 = 0 Use the quadratic formula with a = 11, b = 1, and c = –7. x= =
−b ± b 2 − 4ac 2a −1 ±
(1)
2
− 4 (11)( −7 )
2 (11)
−1 ± 309 22 −1 + 309 −1 − 309 The roots are and . 22 22 =
130 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 7
Page 318
Answers may vary. For example: The axis of symmetry is the same for both because they have the same value for a and b. Chapter 6 Chapter Test
Question 8
Page 318
Find d-coordinate of the vertex. Then, find the h-coordinate. b d =− 2a 20 =− 2 ( −5) =2 h = −5d 2 + 20d + 1 = −5 ( 2 ) + 20 ( 2 ) + 1 2
= 21
The maximum height of the firework is 21 m. Chapter 6 Chapter Test
Question 9
Page 318
a) There will be two x-intercepts. The parabola opens downward and the vertex is above the xaxis. b) Let y = 0, subtract 18 from both sides, and then divide both sides by –2. Next, take the square root of both sides, keeping both roots. Then, subtract 1 from both sides. Finally, simplify the results to find the x-intercepts, –4 and 2. Chapter 6 Chapter Test
Question 10
Page 318
a) ( x − 5 )( x + 3) = 0 x 2 − 2 x − 15 = 0
1 ⎞⎛ 3⎞ ⎛ b) ⎜ x − ⎟⎜ x − ⎟ = 0 2 5 ⎝ ⎠⎝ ⎠ ( 2 x − 1)( 5 x − 3) = 0 10 x 2 − 11x + 3 = 0
MHR • Principles of Mathematics 10 Solutions
131
Chapter 6 Chapter Test
Question 11
Page 318
a) h = −d 2 + 4d
0 = −d ( d − 4 ) The d-intercepts are 0 and 4. The shed is 4 m wide. The d-coordinate of the vertex is 2. h = − d 2 + 4d = − ( 2) + 4 ( 2) 2
=4
The height of the shed is 4 m. b)
c) The relation is valid for values 0 ≤ d ≤ 4 . h must be positive. Chapter 6 Chapter Test
Question 12
Page 318
Find t-coordinate of the vertex. Then, find the C-coordinate.
b 2a −96 =− 2 ( 3)
t=−
= 16 C = 3t 2 − 96t + 1014 = 3 (16 ) − 96 (16 ) + 1014 2
= 246
The minimum cost of operating the machine is $246 for 16 h of operation.
132 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 13
Page 319
1 ( 2 x + 1)( 6 x − 3) = 240 2 12 x 2 − 3 = 480 12 x 2 = 483 483 x2 = 12 x 6.34 For an area of 240 m2, the value of x is 6.34 m. Chapter 6 Chapter Test
Question 14
Page 319
d = 0.0052s 2 + 0.13s 20 = 0.0052s 2 + 0.13s 0 = 0.0052s 2 + 0.13s − 20 Use the quadratic formula with a = 0.0052, b = 0.13, and c = –20. s= =
−b ± b 2 − 4ac 2a −0.13 ±
( 0.13) − 4 ( 0.0052 )( −20 ) 2 ( 0.0052 ) 2
−0.13 ± 0.4329 0.0104 So, s 50.8 or s –75.8. The speed for a stopping distance of 20 m is 50.8 km/h. =
MHR • Principles of Mathematics 10 Solutions
133
Chapter 6 Chapter Test
Question 15
Page 319
a) Let d = 0 and use the quadratic formula with a = –1, b = 3, and c = 4.
d= =
−b ± b2 − 4ac 2a −3 ±
( 3)
2
− 4 ( −1)( 4 )
2 ( −1)
−3 ± 25 −2 −3 ± 5 = −2
=
The zeros are –1 and 4. b)
c) The relation is valid for 0 ≤ d ≤ 4 . h must be positive. d) Van hits the water at 4 m. e) The d-coordinate of the vertex is
−1 + 4 , or 1.5. 2
h = − d 2 + 3d + 4 = − (1.5 ) + 3 (1.5 ) + 4 2
= 6.25
Van's maximum height is 6.25 m.
134 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapter Test
Question 16
Page 319
a) Find the t-coordinate of the vertex. Then, find the h-coordinate.
t=− =−
b 2a 14 2 ( −4.9 )
1.4 h = −4.9t 2 + 14t + 2.5 = −4.9 (1.4 ) + 14 (1.4 ) + 2.5 2
12.5
The maximum height of 12.5 m occurs at 1.4 s.
h = −4.9t 2 + 14t + 2.5
b)
0.5 = −4.9t 2 + 14t + 2.5 0 = −4.9t 2 + 14t + 2 Use the quadratic formula with a = –4.9, b = 14, and c = 2. d= =
−b ± b2 − 4ac 2a −14 ±
(14 ) − 4 ( −4.9 )( 3) 2 ( −4.9 ) 2
−14 ± 235.2 −9.8 So, d 0 or d 3. It takes the ball 3 s to reach the player. =
MHR • Principles of Mathematics 10 Solutions
135
Chapter 6 Chapter Test Question 17 Let x and y represent the legs of the triangle. x + y = 23 y = 23 − x
Page 319
x 2 + y 2 = 172 x 2 + ( 23 − x ) = 289 2
x 2 + 529 − 46 x + x 2 = 289 2 x 2 − 46 x + 240 = 0 x 2 − 23x + 120 = 0
( x − 8 )( x − 15) = 0 So, x = 8 or x = 15. One leg measures 8 cm, and the other measures 15 cm.
Chapter 6 Chapter Test
Question 18
Page 319
Let the side length of the base of the box be represented by x. 8 x 2 = 512 x 2 = 64 x =8
The dimensions of the original piece of cardboard were 24 cm by 24 cm.
Chapter 6 Chapter Test
Question 19
Page 319
Solutions for the Achievement Checks are shown in the Teacher Resource.
136 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapters 4 to 6 Review Chapter 6 Chapters 4 to 6 Review
Question 1
Page 320
a) x
y
–2 –1 0 1 2
9 7 5 3 1
First Differences –2 –2 –2 –2
The first differences are constant. The relation is linear.
b) x
y
–2 –1 0 1 2
–3 3 5 3 -3
First Differences
Second Differences
6 2 -2 -6
–4 –4 –4
The second differences are constant. The relation is quadratic.
MHR • Principles of Mathematics 10 Solutions
137
Chapter 6 Chapters 4 to 6 Review
Question 2
Page 320
a) The graph of y = x 2 + 2 is the graph of y = x 2 translated 2 units upward.
b) The graph of y = ( x + 3) is the graph of y = x 2 translated 3 units to the left. 2
1 c) The graph of y = x 2 + 2 is the graph of y = − x 2 vertically 4 1 compressed by a factor of and reflected in the x-axis. 4
Chapter 6 Chapters 4 to 6 Review
Question 3
Page 320
a)
b) Her maximum height above the water was 11 m. c) Using a graphing calculator, the x-intercept is about 4.3. Diane had travelled 4.3 m horizontally when she entered the water.
138 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapters 4 to 6 Review
Question 4
Page 320
The x-intercepts are –3 and 5, so the equation is of the form y = a ( x + 3)( x − 5) . Substitute (x, y) = (1, –4) and solve for a. −4 = a (1 + 3)(1 − 5 ) −4 = −16a 1 =a 4
An equation for the parabola is y =
1 ( x + 3)( x − 5) . 4
Chapter 6 Chapters 4 to 6 Review
Question 5
1 24 1 = 16
Page 320
b) ( −3) =
1
−2
a) 2 −4 =
=
( −3 ) 1 9
1 8
c) 250 = 1
d) 8−1 =
e) ( −1) = 1
1 ⎛ 3⎞ f) ⎜ ⎟ = 3 4 ⎝ ⎠ ⎛ 3⎞ ⎜ ⎟ ⎝4⎠ 1 = 27 64 64 = 27
−3
12
Chapter 6 Chapters 4 to 6 Review
2
Question 6
Page 320
a) 20.8 years = 4 × 5.2 years 4 ⎛1⎞ 20 ⎜ ⎟ = 1.25 ⎝2⎠ After 20.8 years, 1.25 g of Cobalt-60 remains.
b) 36.4 years = 7 × 5.2 years 7 ⎛1⎞ 20 ⎜ ⎟ = 0.156 25 ⎝2⎠ After 36.4 years, 0.156 25 g of Cobalt-60 remains.
MHR • Principles of Mathematics 10 Solutions
139
Chapter 6 Chapters 4 to 6 Review
Question 7
Page 320
Question 8
Page 320
A = 3 x ( 2 x + 1) − x 2 = 6 x 2 + 3x − x 2 = 5 x 2 + 3x
Chapter 6 Chapters 4 to 6 Review
b) ( h + 5 ) = h 2 + 10h + 25
a) ( n + 3)( n − 3) = n 2 − 3n + 3n − 9
2
= n2 − 9
c) ( d − 4 )( d − 2 ) = d 2 − 2d − 4d + 8
d) ( m + 3)( m + 7 ) = m 2 + 7 m + 3m + 21
= d 2 − 6d + 8
= m 2 + 10m + 21
f) ( x − 7 ) = x 2 − 14 x + 49
e) ( 3t − 5 )( 3t + 5 ) = 9t 2 − 25
2
Chapter 6 Chapters 4 to 6 Review
( = x (6x
Question 9
a) x ( 3x + 1)( 2 x − 5 ) = x 6 x 2 − 15 x + 2 x − 5 2
− 13 x − 5
)
Page 320
)
= 6 x − 13 x − 5 x 3
2
b) ( 2k + 3) − ( k + 2 )( k − 2 ) = 4k 2 + 12k + 9 − k 2 + 4 2
= 3k 2 + 12k + 13
(
)
c) 5 ( y − 4 )( 3 y + 1) + ( 3 y − 4 ) = 5 3 y 2 − 11y − 4 + 9 y 2 − 24 y + 16 2
= 15 y 2 − 55 y − 20 + 9 y 2 − 24 y + 16 = 24 y 2 − 79 y − 4
( = 3 ( 6a
d) 3 ( 2a + 3b )( 3a − 2b ) = 3 6a 2 − 4ab + 9ab − 6b 2 2
+ 5ab − 6b 2
= 18a + 15ab − 18b 2
)
)
2
140 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapters 4 to 6 Review
Question 10
Page 320
Chapter 6 Chapters 4 to 6 Review
Question 11
Page 321
a) y 2 + 12 y + 27 = ( y + 3)( y + 9 )
b) x 2 + 2 x − 3 = ( x + 3)( x − 1)
c) n 2 + 22n + 21 = ( n + 21)( n + 1)
d) p 2 − 8 p + 15 = ( p − 5 )( p − 3)
e) x 2 + 2 x − 15 = ( x + 5 )( x − 3)
f) k 2 + 5k + 24 cannot be factored
Chapter 6 Chapters 4 to 6 Review a) p 2 + 12 p + 36 = ( p + 6 )
Question 12
Page 321
b) 9d 2 + 6d + 1 = ( 3d − 1)
2
2
c) x 2 − 49 = ( x + 7 )( x − 7 )
d) 4a 2 − 20a + 25 = ( 2a − 5 )
e) 8t 2 − 18 = 2 ( 4t 2 − 9 )
f) a 2 − 4b 2 = ( a + 2b )( a − 2b )
2
= 2 ( 2t + 3)( 2t − 3)
Chapter 6 Chapters 4 to 6 Review
Question 13
Page 321
a) k = 11; m 2 + 11m + 10 = ( m + 1)( m + 10 ) k = −11; m 2 − 11m + 10 = ( m − 1)( m − 10 ) k = 7; m 2 + 7m + 10 = ( m + 2 )( m + 5) k = −7; m 2 − 7m + 10 = ( m − 2 )( m − 5)
b) k = 12; 9a 2 − 12a + 4 = ( 3a − 2 )
2
k = −12; 9a 2 + 12a + 4 = ( 3a + 2 )
2
MHR • Principles of Mathematics 10 Solutions
141
Chapter 6 Chapters 4 to 6 Review
(
Question 14
Page 321
)
A = π 4 x 2 + 36 x + 81 = π ( 2x + 9)
2
The radius of the circle is 2 x + 9 . The diameter is 4x + 18.
142 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapters 4 to 6 Review
Question 15
Page 321
a) y = x 2 + 6 x − 16
( = (x = (x
)
= x 2 + 6 x − 16
)
2
+ 6 x + 32 − 32 − 16
2
+ 6 x + 32 − 32 − 16
)
= ( x + 3) − 25 2
b) y = x 2 − 8 x + 7
(
)
= x2 − 8x + 7
( = (x
)
= x 2 − 8 x + ( −4 ) − ( −4 ) + 7 2
2
2
)
− 8 x + ( −4 ) − ( −4 ) + 7 2
2
= ( x − 4) − 9 2
c) y = x 2 + 4 x + 10
( = (x = (x
)
= x 2 + 4 x + 10
)
2
+ 4 x + 22 − 2 2 + 10
2
+ 4 x + 22 − 2 2 + 10
)
= ( x + 2) + 6 2
MHR • Principles of Mathematics 10 Solutions
143
d) y = − x 2 + 6 x − 8
(
)
= − x2 − 6x − 8
( = −(x
)
= − x 2 − 6 x + ( −3) − ( −3) − 8 2
2
2
)
− 6 x + ( −3) − ( −1)( −3) − 8 2
2
= − ( x − 3) + 1 2
e) y = 2 x 2 + 8 x + 5
( = 2( x = 2( x
)
= 2 x2 + 4 x + 5
) ) − 2 ( −2 ) + 5
2
+ 4 x + 22 − 22 + 5
2
+ 4 x + 22
2
= 2 ( x + 2) − 3 2
f) y = −2 x 2 − 12 x − 7
( = −2 ( x = −2 ( x
)
= −2 x 2 + 6 x − 7
) − 3 ) − ( −2 ) ( 3 ) − 7
2
+ 6 x + 32 − 32 − 7
2
+ 6x + 3
2
2
2
= −2 ( x + 3) + 11 2
144 MHR • Principles of Mathematics 10 Solutions
Chapter 6 Chapters 4 to 6 Review a)
Question 16
Page 321
x 2 − 14 x + 24 = 0
( x − 2 )( x − 12 ) = 0 x−2=0
or x − 12 = 0
x=2
or
x = 12
Check by substituting both solutions in the original equation. For x = 2: For x = 12: 2 R.S. = 0 L.S. = x − 14 x + 24 L.S. = x 2 − 14 x + 24
R.S. = 0
= ( 2 ) − 14 ( 2 ) + 24
= (12 ) − 14 (12 ) + 24
=0
=0
2
2
L.S. = R.S.
L.S. = R.S.
The roots are 2 and 12.
b)
n 2 + 4n − 21 = 0
( n + 7 )( n − 3) = 0 n+7=0 n = −7
or n − 3 = 0 or
n=3
Check by substituting both solutions in the original equation. For n = –7: For n = 3: R.S. = 0 L.S. = n 2 + 4n − 21 L.S. = n 2 + 4n − 21 = ( −7 ) + 4 ( −7 ) − 21
= ( 3 ) + 4 ( 3 ) − 21
=0
=0
2
L.S. = R.S.
R.S. = 0
2
L.S. = R.S.
The roots are –7 and 3.
MHR • Principles of Mathematics 10 Solutions
145
m 2 − 16 = 0
c)
( m + 4 )( m − 4 ) = 0 m+4=0
or m − 4 = 0
m = −4 or
m=4
Check by substituting both solutions in the original equation. For m = –4: For m = 4: R.S. = 0 L.S. = m 2 − 16 L.S. = m 2 − 16 = ( 4 ) − 16
R.S. = 0
= ( −4 ) − 16
2
2
=0
=0
L.S. = R.S.
L.S. = R.S.
The roots are 4 and –4. 2 y2 + 5 y + 2 = 0
d)
2 y2 + 4 y + y + 2 = 0
(2y
)
+ 4 y + ( y + 2) = 0
2
2 y ( y + 2) + ( y + 2) = 0
( y + 2 )( 2 y + 1) = 0 y+2=0 y = −2
or 2 y + 1 = 0 or
y=−
1 2
Check by substituting both solutions in the original equation. 1 For y = –2: For y = − : 2 2 2 R.S. = 0 L.S. = 2 y + 5 y + 2 L.S. = 2 y + 5 y + 2 = 2 ( −2 ) + 5 ( −2 ) + 2 2
=0
L.S. = R.S.
2
⎛ 1⎞ ⎛ 1⎞ = 2⎜ − ⎟ + 5⎜ − ⎟ + 2 ⎝ 2⎠ ⎝ 2⎠ =0 L.S. = R.S.
1 The roots are –2 and − . 2
146 MHR • Principles of Mathematics 10 Solutions
R.S. = 0
7t 2 = 70t − 175
e)
7t 2 − 70t + 175 = 0
(
)
7 t 2 − 10t + 25 = 0 7 ( t − 5) = 0 2
t −5= 0 t =5 Check by substituting the solution in the original equation.
R.S. = 70t − 175
L.S. = 7t 2
= 7 ( 5)
= 70 ( 5 ) − 175
2
= 175
= 175 L.S. = R.S.
The root is 5.
Chapter 6 Chapters 4 to 6 Review Question 17 Page 321 Factor and solve the corresponding quadratic equation. a) y = x 2 − 3 x + 2 0 = ( x − 2 )( x − 1) The x-intercepts are 2 and 1. Find the x-coordinate of the vertex, and then, the ycoordinate. 1+ 2 x= 2 = 1.5 y = x 2 − 3x + 2 = (1.5 ) − 3 (1.5 ) + 2 2
= −0.25 The vertex is (1.5, −0.25 ) .
MHR • Principles of Mathematics 10 Solutions
147
b) y = x 2 − 16 0 = ( x + 4 )( x − 4 ) The x-intercepts are –4 and 4. Find the x-coordinate of the vertex, and then, the ycoordinate. −4 + 4 x= 2 =0 y = x 2 − 16 = ( 0 ) − 16 2
= −16 The vertex is ( 0, −16 ) .
c) y = 2 x 2 − 5 x − 12 0 = 2 x 2 − 8 x + 3 x − 12
(
)
0 = 2 x 2 − 8 x + ( 3 x − 12 ) 0 = 2 x ( x − 4 ) + 3( x − 4 ) 0 = ( x − 4 )( 2 x + 3)
The x-intercepts are 4 and −1.5 . Find the x-coordinate of the vertex, and then, the y-coordinate. −1.5 + 4 x= 2 = 1.25 y = 2 x 2 − 5 x − 12 = 2 (1.25 ) − 5 (1.25 ) − 12 2
= −15.125 The vertex is (1.25, −15.125 ) .
148 MHR • Principles of Mathematics 10 Solutions
d) y = − x 2 − 7 x − 12
(
0 = − x 2 + 7 x + 12
)
0 = − ( x + 3)( x + 4 ) The x-intercepts are –3 and –4. Find the x-coordinate of the vertex, and then, the ycoordinate. −3 − 4 x= 2 = −3.5 y = − x 2 − 7 x − 12 = − ( −3.5 ) − 7 ( −3.5 ) − 12 2
= 0.25 The vertex is ( −3.5,0.25) .
e) y = −3x 2 + 6 x 0 = −3x ( x − 2 ) The x-intercepts are 0 and 2. Find the x-coordinate of the vertex, and then, the y-coordinate. 0+2 x= 2 =1 y = −3x 2 + 6 x = −3 (1) + 6 (1) 2
=3 The vertex is (1,3) .
MHR • Principles of Mathematics 10 Solutions
149
Chapter 6 Chapters 4 to 6 Review
Question 18
Page 321
The equation is of the form y = ax ( x + 6 ) . Substitute (x, y) = –3, 4) and solve for a. 4 = a ( −3)( −3 + 6 ) 4 = −9a −
4 =a 9 4 y = − x ( x + 6) 9 4 8 = − x2 − x 9 3
Chapter 6 Chapters 4 to 6 Review
Question 19
Page 321
a) Use the quadratic formula with a = 1, b = –6, and c = 1. x= = =
−b ± b 2 − 4ac 2a 6±
( −6 ) − 4 (1)(1) 2 (1) 2
6 ± 32 2
The roots are
6 + 32 6 − 32 and . 2 2
b) Use the quadratic formula with a = 3, b = –5, and c = 1. x= = =
−b ± b 2 − 4ac 2a 5±
( −5 ) − 4 ( 3)(1) 2 ( 3) 2
5 ± 13 6
The roots are
5 + 13 5 − 13 and . 6 6
150 MHR • Principles of Mathematics 10 Solutions
c) Use the quadratic formula with a = 3.2, b = –5.6, and c = –7.1. x= =
−b ± b 2 − 4ac 2a 5.6 ±
( −5.6 ) − 4 ( 3.2 )( −7.1) 2 ( 3.2 ) 2
5.6 ± 122.24 6.4 5.6 + 122.24 5.6 − 122.24 The roots are and . 6.4 6.4 =
d) Use the quadratic formula with a = 2, b = 5, and c = –9. x= = =
−b ± b 2 − 4ac 2a −5 ±
( 5)
2
− 4 ( 2 )( −9 )
2 (2)
−5 ± 97 4
The roots are
−5 + 97 −5 − 97 and . 4 4
e) Use the quadratic formula with a = 3, b = –8, and c = 3. x= = =
−b ± b 2 − 4ac 2a 8±
( −8)
2
− 4 ( 3)( 3)
2 ( 3)
8 ± 28 6
The roots are
8 + 28 8 − 28 and . 6 6
MHR • Principles of Mathematics 10 Solutions
151
Chapter 6 Chapters 4 to 6 Review
Question 20
Page 321
Perimeter: 2 x + 2 y = 8 Area: xy = 2 Rearrange the perimeter equation to obtain an expression for y. Then, substitute the expression into the area equation. 2x + 2 y = 8 x+ y =4 y = 4− x xy = 2 x (4 − x ) = 2 − x2 + 4 x − 2 = 0 x2 − 4 x + 2 = 0 Use the quadratic formula with a = 1, b = –4, and c = 2. x= =
−b ± b 2 − 4ac 2a 4±
( −4 )
2
− 4 (1)( 2 )
2 (1)
4± 8 2 So, x 3.4 or x 0.6. =
The length is 3.4 m and the width is 0.6 m.
Chapter 6 Chapters 4 to 6 Review
Question 21
Page 321
R = ( 20 + x )( 500 − 20 x ) = 10 000 + 100 x − 20 x 2 Calculate the x-coordinate of the vertex. b 2a 100 =− 2 ( −20 )
x=−
= 2.5 The fare that will maximize the revenue is $22.50.
152 MHR • Principles of Mathematics 10 Solutions