PENGARUH SUHU DAN WAKTU PENYEDUHAN TEH HIJAU

Download Penelitian ini dilakukan dengan tujuan melihat pengaruh kondisi ekstraksi ... Perlakuan penyeduhan ekstrak awal teh hijau pada suhu 85˚C se...

1 downloads 614 Views 1MB Size
PENGARUH SUHU DAN WAKTU PENYEDUHAN TEH HIJAU (Camellia sinensis) SERTA PROSES PENCERNAAN IN VITRO TERHADAP AKTIVITAS INHIBISI LIPASE

SKRIPSI

SAGITA NINDYASARI F24080106

FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2012

EFFECT OF EXTRACTING PROCESS AND DIGESTING CONDITION ON GREEN TEA (Camellia sinensis) ANTI-LIPASE ACTIVITY IN VITRO Sagita Nindyasari1, Endang Prangdimurti1 Department of Food Science and Technology, Faculty of Agricultural Technology, Bogor Agricultural University, IPB Darmaga Campus, PO BOX 220, Bogor, West Java, Indonesia Phone 62 856 91937104, email: [email protected] 1

ABSTRACT Obesity will lead to many other degenerative diseases. One of the alternative solutions to prevent obesity is by inhibiting the digestion of lipids. Green tea extract has anti-lipase activity. This research aims to determine the effect of time (5, 10, and 15 minutes) and temperature (70, 85, and 100˚C) of green tea brewing and in vitro digestion on lipase inhibition. The research method is divided into two stages, green tea brewing and in vitro gastrointestinal pH simulation. Green tea extract is analyzed for anti-lipase activity, total phenol, and condensed tannin level. The results showed that the temperature and time of brewing influence the level of lipase inhibition, total phenol, and condensed tannin of green tea extract. The total phenols and condensed tannin level have a strong correlation with the lipase inhibition. The green tea initial extract (before in vitro digestion) in 85˚C for 5 min and 100˚C temperature in all the time showed the highest inhibition activity. But, after in vitro digestion, only green tea which brewed in 100˚C for 5 minutes and 10 minutes which had the best inhibition of lipase. There are no difference in significant level for inhibition activity between green tea brewed in 100˚C brewing temperature for 5 minutes and 10 minutes. Keywords: green tea, obesity, lipase, lipase inhibition.

ii

Sagita Nindyasari. F24080106. Pengaruh Suhu Dan Waktu Penyeduhan Teh Hijau (Camellia Sinensis) Serta Proses Pencernaan In Vitro Terhadap Aktivitas Inhibisi Lipase. Di bawah bimbingan Endang Prangdimurti. 2012.

RINGKASAN Obesitas kini merupakan masalah kesehatan dunia termasuk di Indonesia. Penyebab terjadinya obesitas diantaranya adalah pola makan secara berlebihan sehingga jumlah kalori yang dibutuhkan tubuh dengan jumlah kalori yang masuk ke dalam tubuh tidak seimbang. Akibatnya, kalori yang berlebihan dalam tubuh menjadi lemak yang tersimpan di dalam jaringan adiposa yang tertimbun di bawah kulit. Untuk mencegah kemungkinan obesitas dan segala penyakit turunannya, upaya yang dapat dilakukan adalah dengan menurunkan jumlah asupan lipid yang dapat diserap oleh tubuh atau dengan menghambat pencernaan lipid. Hal tersebut dapat didukung dengan upaya konsumsi pangan yang mengandung komponen yang memiliki sifat anti lipase. Salah satu bahan pangan yang diketahui memiliki sifat antilipase adalah teh hijau. Penelitian ini dilakukan dengan tujuan melihat pengaruh kondisi ekstraksi berdasarkan waktu dan suhu serta kondisi pencernaan in vitro terhadap kemampuan inhibisi enzim lipase dari ekstrak teh hijau. Suhu awal penyeduhan yang digunakan adalah 70, 85, dan 100˚C dengan waktu penyeduhan masing-masing 5, 10, dan 15 menit, sehingga dihasilkan 9 macam ekstrak teh (disebut sebagai ekstrak awal). Sebagian ekstrak awal dianalisis total fenol, kadar tanin terkondensasi, dan daya inhibisi lipase. Sedangkan, sebagian yang lain diperlakukan simulasi pH sistem pencernaan, yaitu dikondisikan menjadi pH 2 kemudian pH 6.8. Setelah itu ekstrak simulasi pH yang sama, dianalisis yang sama. Ekstrak teh awal dengan suhu penyeduhan 100˚C selama 10 menit memiliki kadar total fenol paling tinggi. Faktor suhu dan interaksi antara suhu dan waktu memiliki pengaruh nyata pada total fenol ekstrak teh awal (p < 0.05). Seperti halnya pada ekstrak teh awal, kadar total fenol ekstrak teh hijau setelah simulasi pencernaan yang tertinggi adalah pada perlakuan di suhu penyeduhan 100˚C selama 10 menit. Faktor suhu memberikan pengaruh nyata pada kadar total fenol ekstrak teh hijau setelah simulasi sistem pencernaan (p < 0.05). Waktu ekstraksi yang terlalu lama akan mengakibatkan terjadinya pemaparan O2 semakin banyak, sementara terdapat beberapa komponen fenol yang bersifat termosensitif. Semakin lama waktu ekstraksi, maka komponen polifenol yang larut akan semakin tinggi, tetapi pada waktu ekstraksi yang sangat lama justru akan menyebabkan senyawa polifenol rusak karena teroksidasi oleh panas. Hal tersebut didukung oleh data perlakuan penyeduhan suhu 100˚C selama 15 menit yang menurun nilainya. Kadar total fenol baik pada ekstrak awal teh hijau terus meningkat dari perlakuan suhu 70˚C selama 10 menit hingga perlakuan penyeduhan pada suhu 100˚C selama 10 menit. Semakin tinggi suhu penyeduhan maka makin tinggi total fenol yang terekstrak. Kadar tanin terkondensasi yang paling besar ditunjukkan oleh ekstrak awal teh hijau dengan suhu penyeduhan 100˚C selama 10 menit. Faktor suhu, waktu, dan interaksi antara suhu dan waktu berpengaruh pada kadar tanin terkondensasi pada ekstrak awal teh hijau (p < 0.05). Seperti halnya pada ekstrak awal teh hijau, kadar tanin terkondensasi pada ekstrak teh hijau setelah simulasi sistem pencernaan tertinggi ditunjukkan oleh ekstrak teh hijau dengan kondisi penyeduhan 100˚C selama 10 menit. Faktor suhu, waktu, dan interaksi antara suhu dan waktu berpengaruh pada kadar tanin terkondensasi pada ekstrak teh hijau setelah simulasi sistem pencernaan (p < 0.05). Pada pemanasan dengan suhu yang semakin tinggi akan diperoleh kadar tanin dalam jumlah besar tetapi kualitas tanin yang dihasilkan kurang baik karena komponen non-tanin yang terlarut juga semakin besar. Sedangkan penyeduhan dengan suhu yang terlalu rendah dan waktu pemanasan yang terlalu singkat kurang

iii

efisien karena kelarutan tanin belum mencapai titik optimal. Apabila terbentuk ikatan hidrogen antar tanin dengan protein, terutama pada pH mendekati isoelektrik (4-5) kemungkinan yang terjadi adalah protein menjadi terendapkan. Fenomena ini dikenal dengan denaturasi protein. Apabila protein enzim terdenaturasi, maka enzim akan menjadi inaktif. Pada daya inhibisi ekstrak awal teh hijau terhadap aktivitas enzim lipase menunjukkan bahwa hanya faktor suhu yang berpengaruh terhadap nilai inhibisi enzim lipase (p < 0.05). Daya inhibisi lipase pada perlakuan penyeduhan 70˚C selama 10 menit sampai perlakuan suhu penyeduhan 100˚C selama 10 menit terus meningkat. Hal itu terjadi karena komponen bioaktif yang diduga dapat menghambat aktivitas enzim lipase belum banyak terekstrak dan pada perlakuan penyeduhan suhu 100˚C selama 15 menit, komponen bioaktif tersebut diduga teroksidasi oleh panas dan menurunkan aktivitas inhibisi lipase. Perlakuan penyeduhan ekstrak awal teh hijau pada suhu 85˚C selama 5 menit dan suhu 100˚C pada ketiga waktu menunjukkan daya inhibisi yang paling tinggi. Akan tetapi, dilihat dari ekstrak teh hijau setelah simulasi pencernaan, hanya perlakuan penyeduhan 100˚C selama 5 menit dan 10 menit yang menunjukkan daya inhibisi lipase terbaik. Oleh karena itu, perlakuan penyeduhan ekstrak teh hijau pada suhu 100˚C selama 5 menit dan suhu 100˚C selama 10 menit merupakan variasi perlakuan penyeduhan yang dapat dijadikan sebagai rekomendasi untuk menghambat penyerapan lipid. Komponen bioaktif yang diduga dapat menghambat kerja dari enzim adalah tanin yang merupakan komponen fenolik yang tahan terhadap panas dan tidak tahan terhadap perubahan pH sistem pencernaan manusia. Hal tersebut dapat dilihat dari kemampuan komponen yang masih bisa terekstrak dengan baik di suhu 100˚C dan memberikan nilai inhibisi lebih besar dibandingkan Orlistat. Sebagian besar perlakuan penyeduhan ekstrak teh hijau memiliki daya inhibisi lipase yang lebih tinggi dibandingkan dengan Orlistat.

iv

PENGARUH SUHU DAN WAKTU PENYEDUHAN TEH HIJAU (Camellia sinensis) SERTA PROSES PENCERNAAN IN VITRO TERHADAP AKTIVITAS INHIBISI LIPASE

SKRIPSI Sebagai salah satu syarat untuk memperoleh gelar SARJANA TEKNOLOGI PERTANIAN pada Departemen Ilmu dan Teknologi Pangan Fakultas Teknologi Pertanian Institut Pertanian Bogor

Oleh SAGITA NINDYASARI F24080106

FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2012

v

Judul Skripsi Nama NIM

: Pengaruh Suhu Dan Waktu Penyeduhan Teh Hijau (Camellia Sinensis) serta Proses Pencernaan In Vitro terhadap Aktivitas Inhibisi Lipase : Sagita Nindyasari : F24080106

Menyetujui:

Pembimbing,

(Dr. Ir. Endang Prangdimurti, M.Si) NIP 19680723 199203 2 001

Mengetahui: Ketua Departemen,

(Dr. Ir. Feri Kusnandar, M.Sc) NIP 19680526.199303.1.004.

Tanggal lulus : 16 Juli 2012

vi

PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul Pengaruh Suhu Dan Waktu Penyeduhan Teh Hijau (Camellia Sinensis) serta Proses Pencernaan In Vitro Terhadap Aktivitas Inhibisi Lipase adalah hasil karya saya sendiri dengan arahan dosen pembimbing akademis dan belum diajukan dalam bentuk apa pun pada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Bogor, Juli 2012 Yang membuat pernyataan,

Sagita Nindyasari F24080106

vii

BIODATA PENULIS

Sagita Nindyasari. Lahir di Jakarta 8 Desember 1990 dari Ayah Sudaryono dan Ibu Siti Nur Aini, sebagai putri ke-dua dari tiga bersaudara. Penulis merupakan adik dari Kurnia Sari Aziza dan kakak dari Andhika Budiantono Irfan. Penulis memulai pendidikan di SD Bhakti Kemanggisan, Jakarta, SMPN 75 Kebon Jeruk Jakarta dan kemudian menamatkan SMA pada tahun 2008 di SMA Negeri 112 Pesanggrahan Jakarta Barat. Jalur SNMPTN berhasil meloloskan penulis untuk melanjutkan studi di IPB dengan jurusan Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian. Selama menempuh pendidikan di IPB, penulis aktif dalam kepanitiaan suatu acara baik di jurusan maupun di Fakultas. Pada tahun 2009, penulis aktif sebagai pengurus Himpunan Mahasiswa Teknologi Pangan (Himitepa) divisi internal. Pada tahun 2012, penulis menjadi asisten praktikum Analisis Pangan. Penulis pernah mengikuti seminar Nasional seperti Indonesian Food Bowl Quiz, seminar HACCP, seminar Halal, dan seminar IFOODEX. Selain itu, pada tahun 2012 penulis mengikuti pelatihan HACCP dan Sistem Jaminan Halal. Tulisan yang pernah dihasilkan oleh penulis antara lain “Kajian Status Halal Kecoa sebagai Alternatif Pangan Berprotein Tinggi”, “Selai Cempedak sebagai Alternatif pengolahan Buah Cempedak dalam Upaya Meningkatkan Nilai Tambah”, “Keamanan Pangan di Lingkungan IPB Tanggung Jawab Siapa?”, dan “Mengomentari Sertifikasi Halal Online dari LPPOMMUI”. Sebagai tugas akhir syarat kelulusan, penulis melakukan penelitian yang berjudul Pengaruh Suhu Dan Waktu Penyeduhan Teh Hijau (Camellia Sinensis) serta Proses Pencernaan In Vitro Terhadap Aktivitas Inhibisi Lipase di bawah bimbingan Dr. Ir. Endang Prangdimurti, M.Si.

viii

KATA PENGANTAR Puji syukur saya panjatkan ke hadirat Allah SWT karena atas atas segala nikmat sehat, nikmat iman, dan anugerah sehingga penulis dapat menyelesaikan skripsi ini. Penelitian dengan judul Pengaruh Suhu Dan Waktu Penyeduhan Teh Hijau (Camellia Sinensis) serta Proses Pencernaan In Vitro Terhadap Aktivitas Inhibisi Lipase telah dilaksanakan sejak bulan Februari sampai Mei 2012 di Laboratorium Ilmu dan Teknologi Pangan IPB. Dengan selesainya penelitian ini hingga waktu skripsi disusun, penulis ingin menyampaikan ucapan terimakasih kepada: 1. Bapak, Mama, Mbak Caca, dan Dhika yang senantiasa memberikan doa, kasih sayang, dan semangat. 2. Keluarga Om Amak dan keluarga Tante Ida yang selalu membantu dan mendoakan. 3. Ibu Dr. Ir. Hj. Endang Prangdimurti, M.Si, sebagai dosen pembimbing atas kesediaannya dalam memberikan saran, bimbingan, nasihat, dan bantuan selama penulis menjadi mahasiswa Ilmu dan Teknologi Pangan, Institut Pertanian Bogor. 4. Teman satu bimbingan: Mohammad Iqbal Bijaksana dan Andika Bagus Bangun Prakoso. 5. Mbak Ilul, Kak Riffi, dan Kak Riyah atas bimbingannya. 6. Persaudaraan teman sekamar A2: 217-218: Rima, Ismi, Ayu, Nisong, Cherish, Teteh, dan Nu. 7. Sahabat terbaik: Ndaru Laksono, Iqbal Gutchi, Yufi Sara Anggraini, Atikah Bararah, Ayu Ariesta Pradhana, Rafiqah Nusrat Begum, Raudhatussa’addah, Yuliyanti, dan Mochamad Buyung Syahrial. 8. Kroto bersaudara: Arin, Umar, dan Utha. 9. Sahabat ITP 45 yang berkesan: Nto, Vitor, Mustain, Sally, Bangun, Yunita, Eka, Nurul, Yana, Arum, Ical, Obit, Angel, Wulan, Ratna, Mizu, Doddy, Rathih, Tata, Sam, Dini, Hilda, Inah, dan Indra. 10. Seluruh rekan-rekan ITP 45 yang tidak dapat disebutkan satu per satu. 11. Adik-adik tingkat tersayang: Yosh, Dani, Ayas, Hayyu, Seno, Afi, Anan, Kyo, Mila, Henry, Desi, Kania, Uun, Rafdi, Khalid, As’ad, Nofal, dan adik2 p4 itp 46. 12. Seluruh staf UPT terkhusus Ibu Novi dan Mbak Anie. 13. Para laboran: Mbak Vera, Pak Wachid, Pak Rojak, Pak Sobirin, Pak Yahya, Mas Edi, Teh Uyung, dan lain-lain. dan semua yang turut serta membantu dalam penyelesaian tugas akhir ini. Semoga semua niat dan amal baik kita semua dibalas oleh Allah SWT. Penulis juga berharap semoga tulisan ini dapat memberikan manfaat bagi yang membacanya dan memberikan kontribusi nyata untuk masyarakat.

Bogor, Juli 2012

Sagita Nindyasari

ix

DAFTAR ISI Halaman

KATA PENGANTAR ............................................................................................. ix DAFTAR TABEL ...................................................................................................xi DAFTAR GAMBAR ..............................................................................................xii DAFTAR LAMPIRAN ......................................................................................... xiii I.

PENDAHULUAN ............................................................................................. 1 A.

LATAR BELAKANG ............................................................................... 1

B.

TUJUAN PENELITIAN ........................................................................... 2

II.

TINJAUAN PUSTAKA ................................................................................. 3 A.

TEH HIJAU .............................................................................................. 3

B.

LIPID ............................................................................................................6

C.

ANTILIPASE .............................................................................................8

III.

METODOLOGI PENELITIAN ................................................................... 11

A.

BAHAN DAN ALAT ............................................................................. 11

B.

METODE PENELITIAN ........................................................................ 11

IV.

HASIL DAN PEMBAHASAN .................................................................... 15

A.

EKSTRAKSI TEH HIJAU ...................................................................... 15

B.

NILAI PH EKSTRAK TEH HIJAU ........................................................ 16

C.

KADAR TOTAL FENOL ....................................................................... 16

D.

KADAR TANIN TERKONDENSASI .................................................... 19

E.

INHIBISI ENZIM LIPASE ..................................................................... 22

V.

SIMPULAN DAN SARAN............................................................................27 A.

SIMPULAN ............................................................................................ 27

B.

SARAN................................................................................................... 27

DAFTAR PUSTAKA ............................................................................................. 28 LAMPIRAN………………………………………………………....………………32

x

DAFTAR TABEL Halaman Tabel 1.

Komposisi kimia daun teh....................................................................................

Tabel 2.

Kandungan katekin dalam 100 gram daun teh……………………………....

5

Tabel 3.

Berbagai macam senyawa antilipase dari ekstrak tanaman ..................................

10

Tabel 4.

Komposisi larutan pada analisis inhibisi lipase……………................................

14

Tabel 5.

Suhu akhir ekstrak teh hijau……………………………….................................

15

Tabel 6.

Data total fenol ekstrak teh hijau………………………………………............

19

Tabel 7.

Data tanin terkondensasi ekstrak teh hijau...……………………………….....

21

Tabel 8.

Data inhibisi lipase ekstrak teh hijau....................................................................

23

4

xi

DAFTAR GAMBAR

Halaman Gambar 1.

Tanaman teh.....................................................................................................

Gambar 2.

Mekanisme penghambatan Orlistat .................................................................

10

Gambar 2.

Diagram alir penelitian.....................................................................................

11

Gambar 3.

Diagram alir pembuatan ekstrak teh hijau........................................................

12

Gambar 4.

Total fenol ekstrak teh hijau sebelum dan setelah simulasi sistem pH pencernaan........................................................................................................ Tanin terkondensasi ekstrak teh hijau sebelum dan setelah simulasi sistem pH pencernaan.................................................................................................. Reaksi hidrolisis pNP-laurat.............................................................................

Gambar 5. Gambar 6. Gambar 7.

3

18 20 21 23

Gambar 8.

Nilai inhibisi lipase ekstrak teh hijau sebelum dan setelah simulasi sistem pH pencernaan.................................................................................................. Grafik Korelasi Inhibisi Enzim Lipase dan Total Fenol..................................

Gambar 9.

Grafik Korelasi Inhibisi Lipase dan Tanin Terkondensasi.............................

26

25

xii

DAFTAR LAMPIRAN HALAMAN Lampiran 1. Lampiran 2. Lampiran 3.

Hasil uji statistik RAL dua faktor penyeduhan terhadap pH awal ekstrak teh hijau……………………………………............................................... Tabel data dan kurva standar asam galat……………………................

33 34

Data total fenol (pH awal dan simulasi) ......………………………….... Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol awal……………………………..................................... Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol awal......................................................................... Uji statistik total fenol pH awal (RAL Univariate).................. .......…......

35

Uji lanjut fenol pH awal……...................................................................... Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol simulasi……………………………................................ Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol simulasi...................................................................

39

Lampiran 10.

Uji statistik total fenol pH simulasi (RAL Univariate)....…......................

42

Lampiran 11.

Uji lanjut fenol pH simulasi...............………………….............................

43

Lampiran 12.

Kurva standar tanin terkondensasi .............................................................

44

Lampiran 13.

Data kadar tanin terkondensasi................................................................... Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak awal teh hijau..................................... Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak awal teh hijau........................... Uji statistik tanin terkondensasi pH awal (RAL Univariate)....................

45

49

Lampiran 20.

Uji lanjut tanin terkondensasi pH awal....................................................... Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak teh hijau setelah simulasi.................. Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak teh hijau setelah simulasi......... Uji statistik tanin terkondensasi pH simulasi (RAL Univariate)...............

Lampiran 21.

Uji lanjut tanin terkondensasi pH simulasi (RAL Univariate)..................

53

Lampiran 22. Lampiran 23. Lampiran 24.

Data inhibisi lipase pada teh hijau.............................................................. Uji statistik inhibisi pH awal (RAL Univariate)......................................... Uji lanjut inhibisi awal................................................................................

54 55

Lampiran 25

Uji statistik inhibisi pH simulasi (RAL Univariate)...................................

57

Lampiran 26.

Uji lanjut (inhibisi simulasi)...................................................................... Uji statistik faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH awal.................................................................................... Uji lanjut Duncan perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pH awal.............................................................................................

58

Lampiran 4. Lampiran 5. Lampiran 6. Lampiran 7. Lampiran 8. Lampiran 9.

Lampiran 14. Lampiran 15. Lampiran 16. Lampiran 17. Lampiran 18. Lampiran 19.

Lampiran 27. Lampiran 28.

36 37 38

40 41

46 47 48

50 51 52

56

59 60

xiii

Lampiran 29. Lampiran 30. Lampiran 31.

Lampiran 32.

Lampiran 33.

Lampiran 34.

Lampiran 35.

Lampiran 36

Lampiran 37.

Lampiran 38.

Lampiran 39.

Lampiran 40. Lampiran 41. Lampiran 42. Lampiran 43.

Uji statistik faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH simulasi.............................................................................. Uji lanjut Duncan perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pH awal............................................................................................ Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan...................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan....................................... Korelasi nilai total fenol dan nilai inhibisi ekstrak awal teh hijau............................................................................................................. Korelasi nilai total fenol dan nilai inhibisi ekstrak teh hijau setelah simulasi pH sistem pencernaan................................................................... Korelasi kadar tanin terkondensasi dengan daya inhibisi lipase ekstrak awal teh hijau.............................................................................................. Korelasi kadar tanin terkondensasi dengan daya inhibisi lipase ekstrak teh hijau setelah simulasi pH sistem pencernaan.......................................

61 62

63

65

67

69

71

73

75

77

79 81 82 83 84

xiv

I. PENDAHULUAN

A. LATAR BELAKANG Pada era globalisasi seperti sekarang ini, obesitas merupakan masalah kesehatan dunia termasuk di Indonesia. Obesitas menyerang hampir sepertiga negara-negara industri di dunia. Pada tahun 1998, WHO menyatakan obesitas merupakan masalah global serta ancaman serius bagi kesehatan dunia. Saat ini 1.6 miliar orang dewasa di seluruh dunia mengalami berat badan berlebih (overweight) dan sekurang-kurangnya 400 juta diantaranya mengalami obesitas. Pada tahun 2015, diperkirakan 2.3 miliar orang dewasa akan mengalami overweight dan 700 juta diantaranya obesitas (Depkes, 2009). Perbedaan definisi antara overweight dan obesitas dapat dilihat berdasarkan Indeks Massa Tubuh (IMT). Nilai IMT normal orang Asia adalah 18,5-22,9, sementara nilai IMT sebesar 23-24,9 disebut overweight dan nilai IMT diatas 30 dikatakan obesitas. Di Indonesia, berdasarkan penelitian yang dilakukan oleh Himpunan Studi Obesitas Indonesia (HISOBI) pada tahun 2004, angka prevalensi obesitas sebesar 9,16 % pada pria dan 11,02 % pada wanita. Hal yang menyangkut obesitas ini berkaitan erat dengan meningkatnya kepadatan energi dari makanan sehari-hari. Obesitas bukan suatu kelainan tunggal tetapi merupakan kumpulan kondisi yang heterogen dengan bermacam-macam penyebab (Stanner, 2005). Penyebab terjadinya obesitas diantaranya adalah pola makan secara berlebihan sehingga jumlah kalori yang dibutuhkan tubuh dengan jumlah kalori yang masuk ke dalam tubuh tidak seimbang. Akibatnya, kalori yang berlebihan dalam tubuh menjadi lemak yang tersimpan di dalam jaringan adiposa yang tertimbun di bawah kulit. Selain karena pengkonsumsian makanan yang berlebihan, obesitas dapat juga disebabkan oleh faktor-faktor lain, seperti: kebiasaan hidup, aktivitas fisik, faktor sosio-kultural, faktor ekonomi, adanya gangguan metabolisme dan enzim, hormonal (insulin, thyroid, dan lain-lain), dan faktor keturunan. Diantara banyak penyebab obesitas, sebagian besar masyarakat menderita obesitas karena asupan lipid yang berlebih, terdapat adanya ketidakseimbangan energi untuk waktu yang lama yaitu total energy expenditure lebih kecil dibandingkan energy intake sehingga terjadi akumulasi cadangan energi yang disimpan dalam lemak (Lakka et al., 2007). Obesitas merupakan masalah kesehatan yang serius karena sering disertai dampak penyakit lain yakni berbagai komplikasi seperti diabetes melitus (DM) tipe 2, dislipidemia, hipertensi, stroke (Kanarek dan Kaufman, 1991), kanker, dan gangguan pernafasan (Huxley et al., 2008). Pada data yang dimiliki oleh Diabetes Atlas 2005 (International Diabetes Federation), perkiraan penduduk Indonesia di atas 20 tahun sebesar 125 juta dengan jumlah penderita DM sebanyak 5,6 juta. Diabetes Atlas juga menambahkan jika melihat pola pertambahan penduduk seperti saat ini, diperkirakan pada tahun 2020 nanti akan ada sejumlah 178 juta penduduk berusia di atas 20 tahun akan didapatkan 8,2 juta pasien diabetes. Kemungkinan terjadinya obesitas dan segala penyakit turunannya dapat dicegah yaitu dengan menurunkan jumlah asupan lipid yang dapat diserap oleh tubuh atau dengan menghambat pencernaan lipid. Hal tersebut dapat dilakukan dengan mengonsumsi komponen pangan yang memiliki sifat anti lipase. Tanaman yang memiliki kemampuan anti lipase diantaranya adalah bangle (Martatilofa, 2008), rosela (Urifah, 2011), dan daun teh (McDougall et.al., 2010). Gondoin et al. (2010) mengatakan bahwa teh putih, teh hijau, dan teh hitam yang diseduh dengan air mendidih memiliki daya inhibisi terhadap enzim lipase. Berdasarkan proses pengolahannya, teh pada umumnya digolongkan menjadi tiga jenis yaitu teh hitam, teh hijau, dan teh oolong (Shahidi et al., 2008). Penelitian ini menggunakan ekstrak teh hijau sebagai inhibitor lipase secara in vitro.

1

Teh hijau merupakan teh yang diproses tanpa fermentasi, teh oolong diproses setengah fermentasi, sedangkan teh hitam adalah teh yang difermentasi sempurna. Teh hijau mempunyai efek farmakologis antara lain dapat menurunkan kolesterol, trigliserida, serta glukosa, dapat mencegah karies pada gigi, antimutagenik, antioksidan, dan antibakteri. (Shahidi et al., 2009). Menurut International Tea Committee (ITC), Indonesia menempati posisi keempat di dunia dalam hal konsumsi teh hijau. Masyarakat Indonesia memiliki kebiasaan mengonsumsi teh hijau pada saat makan utama maupun sebagai selingan. Penelitian terdahulu mengenai aktivitas penghambatan enzim lipase pada ekstrak teh hijau sudah pernah dilakukan. Akan tetapi belum diketahui bagaimana proses penyeduhan yang terbaik dilihat berdasarkan waktu dan suhu awal penyeduhan teh hijau. Selain itu, belum diketahui pula bagaimana pengaruh kondisi pencernaan in vitro terhadap kemampuan ekstrak teh dalam penghambatan pencernaan lipid.

B. TUJUAN PENELITIAN Penelitian ini dilakukan dengan tujuan melihat pengaruh kondisi ekstraksi berdasarkan waktu dan suhu serta kondisi pencernaan in vitro terhadap kemampuan inhibisi enzim lipase dari ekstrak teh hijau.

2

II. TINJAUAN PUSTAKA A. TEH HIJAU A.1. Botani dan Klasifikasi Teh Teh merupakan minuman kesehatan yang telah dikenal sejak sekitar 5000 tahun yang lalu di negeri Cina. Secara umum tanaman teh terdiri dari dua varietas besar yaitu varietas Sinensis yang berasal dari Cina dan varietas Assamica yang berasal dari India. Camellia sinensis varietas Assamica daunnya agak besar dengan ujung runcing, sedangkan Camellia sinensis varietas Sinensis daunnya lebih kecil dan ujungnya agak tumpul. (IPGRI, 1997).Teh varietas Assamica inilah yang dibawa ke Indonesia. Teh ini dikenal sebagai teh Jawa (Adisewodjo, 1982). Teh varietas Assamica memiliki kelebihan dari jumlah katekin yang lebih banyak dibandingkan teh varietas Sinensis (Hartoyo, 2003). Penampakan tanaman teh dapat dilihat pada Gambar 1.

Gambar 1. Tanaman teh (Yadi, 2009) Tanaman teh tumbuh dengan baik pada kondisi beriklim hangat dan lembab dengan curah hujan yang cukup tinggi dan juga terdapat banyak paparan sinar matahari, tanah berasam rendah serta drainasi tanah yang baik (Wan et al. di dalam Ho et al. 2009).Dalam istilah kekerabatan dunia tumbuh-tumbuhan, Tuminah (2004) menyebutkan bahwa teh digolongkan kedalam: Kingdom : Plantae Divisio : Spermatophyta Sub Divisio : Angiospermae Class : Dicotiledoneae Ordo : Guttiferales Famili : Theaceae Genus : Camellia Spesies : Camellia sinensis Secara umum, pengklasifikasian teh didasarkan pada proses pengolahannya terdapat tiga jenis, yaitu teh hitam, teh oolong, dan teh hijau (Shahidi et al., 2009). Teh hitam adalah teh yang mengalami proses fermentasi total, yakni dibuat dengan cara memanfaatkan terjadinya oksidasi enzimatis terhadap kandungan katekin teh. Teh oolong adalah teh yang proses pengolahannya disebut semi-fermentasi. Teh jenis ini dihasilkan melalui proses pemanasan yang dilakukan segera setelah proses penggulungan daun guna menghentikan proses fermentasi. Sementara teh hijau adalah teh yang tidak mengalami proses fermentasi (Setyamidjaja, 2000). Teh hijau adalah jenis teh yang dibuat dengan cara menginaktivasi enzim oksidase dan fenolase yang ada dalam pucuk daun teh segar (Hartoyo, 2003). Proses pengolahan teh hijau melalui

3

beberapa tahapan yaitu pemanasan, penggulungan, pengeringan. Menurut Hartoyo (2003) proses pemanasan ini bertujuan untuk menginaktifkan enzim katekol oksidase. Dengan inaktifnya enzim tersebut maka tanin yang terdapat dalam daun teh akan tetap utuh dan tersimpan dalam jaringan tanaman sehingga dengan demikian kadar tanin dalam teh hijau akan tetap tinggi. Pemanasan diartikan sebagai pelayuan daun dengan cara penguapan maupun penyangraian. Pelayuan dapat dilakukan dengan cara daun teh yang baru dipetik, ditebarkan untuk dikurangi kadar airnya hingga menjadi layu. Daun yang telah layu digoreng di atas wajan pada suhu 90˚C selama 8-10 menit, kemudian didinginkan dan harus segera digulung. Penggulungan pada teh hijau bertujuan untuk membentuk mutu secara fisik, karena selama penggulungan pucuk teh akan dibentuk menjadi gulungan kecil dan terjadi pemotongan. Penggulungan dilakukan di atas serumbu bambu yang bawahnya telah diletakkan arang yang membara. Selama proses penggulungan, pememaran daun dan pemerasan cairan sel yang terjadi harus berlangsung secara maksimal dan menempel pada permukaan daun. Tahap selanjutnya adalah pengeringan yang dilakukan menggunakan mesin pengering yang mempunyai suhu masuk 80-100˚C dan suhu keluar 55-60˚C selama 6-10 menit. Proses ini bertujuan mengurangi kadar air, memekatkan cairan sel daun, mengkilatkan kenampakan dan aroma, memperbaiki bentuk gulungan (Adisewodjo, 1982). Kadar air akhir yang diharapkan pada teh hijau adalah sekitar 5-8 % basis basah (Muchidin, 1994). Komposisi kimia yang terkandung dalam daun teh dapat dilihat pada Tabel 1. Tabel 1. Komposisi Kimia Daun Teh Komponen kimia

Daun segar (%)

Selulosa dan serat kasar 34 Protein 17 Klorofil dan pigmen 1.5 Pati 8.5 4 Kafein Tanin 25 Asam amino 8 Mineral 4 Abu 5.5 (Nasution dan Tjiptadi, 1975) Dasar yang digunakan untuk menentukan mutu teh hijau adalah sifat luar dan sifat dalam dari teh hijau. Sifat Luar dari teh hijau terdiri dari warna teh kering, ukuran, bentuk, dan aroma. Warna teh hijau kering adalah hijau muda dan hijau kehitam-hitaman dengan ukuran yang homogen dan tidak tercampur remukan. Sementara bentuk dari teh hijau adalah tergulung dan terpilin, dengan aroma wangi dan tidak apek. Sifat Dalam dari teh hijau dapat dilihat berdasarkan seduhan yakni air seduhan jernih dan sedikit berwarna hijau atau kekuning-kuningan. Warna tersebut tidak akan berubah meskipun seduhan menjadi dingin. Rasa khas dari teh hijau adalah sedikit pahit, dan lebih sepat dibandingkan dengan teh hitam (Spillane, 1992). Standardisasi mutu teh hijau berdasarkan SP-60-1977 adalah mutu I (Peko) yaitu bentuk daun tergulung kecil dengan warna hijau sampai kehitaman, aromanya wangi dan tidak apek, tidak ada benda asing (kotoran), tangkai daun maksimum 5%, dan kadar air maksimum 10%. Mutu II (Jikeng), yaitu bentuk daun tidak tergulung melebar, warnanya hijau kekuning-kuningan sampai kehitam-hitaman, aromanya kurang wangi dan tidak apek. Tidak ada benda asing, tangkai daun maksimum 7%, kadar air maksimum 10%. Mutu III (Bubuk) yaitu bentuk daun seperti bubuk dengan potongan-potongan datar, warnanya hijau kehitam-hitaman, aromanya kurang wangi dan

4

tidak apek, tidak ada benda asing, tangkai daun maksimum 0% dan kadar air maksimum 10%. Mutu IV (Tulang) yaitu sebagian besar berupa tulang daun warnanya hijau kehitam-hitaman, aromanya kurang wangi dan tidak apek, tidak ada benda asing, dan kadar air maksimum 10% (Tunggul, 2009).

A.2 Komponen Bioaktif Teh Jenis polifenol dalam tanaman pada umumnya adalah asam fenolat, flavonoid, dan tanin (Astawan, 2008). Ada sekitar 4000 jenis polifenol yang masuk ke dalam grup flavonoid (Seeram dan Nair, 2002). Flavonoid terbagi menjadi enam subkelas, yaitu flavanol, flavon, flavonol, isoflavon, flavanon, dan anthocyanin (Cadensas dan Parker, 2002). Adapun flavonoid pada teh terutama berupa flavanol dan flavonol. Flavonoid yang banyak terdapat di teh adalah katekin. Katekin teh masuk ke dalam kelas flavanol (Hartoyo, 2003). Katekin yang utama dalam teh adalah epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), dan epigallocatechin gallate (EGCG). Perubahan aktivitas katekin selalu dihubungkan dengan sifat seduhan teh, yaitu rasa, warna dan aroma (Hartoyo, 2003). Katekin mudah mengalami kerusakan yang disebabkan oleh pemaparan oksigen, panas, dan cahaya. Jika katekin teroksidasi, maka EGCG, ECG, EGC, dan GC akan mengalami epimerisasi menjadi gallocatechin gallate (GCG), catechin gallate (CG), gallocatechin (GC), dan catechin (C) (Chen et al., 2001). Jenis flavonoid yang lain adalah flavonol, tetapi jumlahnya lebih sedikit dibandingkan flavanol. Flavonol yang terdapat di dalam teh adalah quercetin, myricetin, dan kaempferol. Berbeda dengan katekin, flavonol tidak dipengaruhi oleh enzim polifenol oksidase (Miean dan Mohamed, 2001). Kadar total empat katekin dalam teh hijau adalah sekitar 25% atas dasar berat kering. EGCG adalah katekin teh paling berlimpah yakni menyumbang 65% dari kandungan katekin total dalam teh hijau (Shahidi et al., 2009). EGCG diketahui juga memiliki aktivitas antioksidatif sangat kuat. Stabilitas katekin sangat dipengaruhi oleh pH dan suhu. Menurut penelitian Julian tahun 2011, semakin tinggi pH dan suhu, maka jumlah katekin pun akan semakin menurun. Penelitian tersebut dilakukan pada ekstrak teh hijau sebagai inhibitor amilase dan glukosidase, sementara Anggraeni (2011) melakukan pengujian inhibisi enzim amilase dan glukosidase pada ekstrak teh hitam. Kandungan katekin pada daun teh dapat dilihat pada Tabel 2. Tabel 2. Kandungan katekin dalam 100 g daun teh Katekin Epigalokatekin Galokatekin Epikatekin Katekin Epigalokatekin galat (EGCG) Epikatekin galat Suryatmo (2003).

g/100 g daun 2.35 0.37 0.63 0.35 10.55 2.75

Tanin merupakan fenol yang larut dalam air yang merupakan bagian dari reaksi fenol dan mempunyai kemampuan untuk mengikat alkaloid, gelatin, dan protein (Bhatia, 1957 diacu dalam Adisewodjo, 1964). Tanin memiliki sifat fisik yaitu berbentuk serbuk warna putih, kuning sampai kecoklatan dan berubah menjadi coklat tua bila kena sinar matahari, mempunyai rasa spesifik (sepat). Secara kimia, tanin dibagi menjadi dua golongan yaitu tanin terhidrolisis dan tanin terkondensasi (Hagerman, 2002). Tanin yang dapat dihidrolisis akan menghasilkan senyawa seperti asam galat,

5

asam elegat, atau asam-asam lainnya. Sedangkan tanin terkondensasi merupakan tanin yang terjadi karena proses kondensasi flavonol (Hagerman, 2002). Tanin pada teh merupakan tanin yang tidak dapat dihidrolisa atau tanin terkondensasi. Tanin tersebut mempunyai sifat larut dalam air, alkohol, gliserin, aseton, tidak larut dalam eter, benzen, berasa sepat, berwarna kuning, amorf, ringan dan tidak berbau (Rangari, 2007). Di dalam air, tanin tersebut akan berbentuk koloid. Apabila airnya diuapkan maka akan tinggal bubuk yang berwarna merah kecoklatan. Tanin terkondensasi sering disebut proantosianidin yang merupakan polimer katekin dan epikatekin (Hedqvist, 2004).

A.3 Penyeduhan Teh Kebanyakan masyarakat Indonesia membuat satu cangkir teh dengan formulasi 5 – 10 gram teh yang diseduh dalam 200 ml air panas dengan lama penyeduhan 5 menit (Somantri, 2011). Akan tetapi. beberapa negara Eropa, penyeduhan teh dilakukan selama 20 menit. Hal tersebut tidak mengakibatkan peningkatan penting dalam kandungan flavonoid yang dihasilkan. Teh yang diseduh dengan menuang 500 ml air mendidih pada 5 gram daun teh dengan lama penyeduhan lima menit mengandung flavonoid sebesar 30-40 mg/l (Afriansyah, 2006). Hampir semua senyawa yang terkandung di dalam teh mudah larut dalam air, kecuali tanin. Sebagai contoh, ketika teh diseduh selama 1-2 menit pertama, semua kafein akan larut tanpa tanin. Tanin merupakan senyawa yang larut dalam air tidak dalam waktu yang cepat akan tetapi tanin dapat bertahan di suhu tinggi. (Bhatia, 1957 diacu dalam Adisewodjo, 1964). Menurut Astill et al. (2001), senyawa-senyawa kimia seperti polifenol, kafein, tanin, dan theaflavin semakin meningkat jumlahnya seiring meningkatnya suhu dan waktu penyeduhan teh. Pada waktu penyeduhan, polifenol teh mengalami banyak perubahan kimia seperti oksidasi dan epimerisasi (Wrasiati et al., 2009). Reaksi epimerisasi katekin merupakan salah satu reaksi terpenting dalam penyeduhan. Masing-masing katekin dapat mengalami epimerisasi dari epistruktur menjadi non epistruktur. Penyeduhan menyebabkan kandungan senyawa epistruktur seperti EGCG, EGC, EC, dan ECG menjadi turun. Sementara itu kandungan katekin non epistruktur seperti GC, C, GCG, dan CG menjadi meningkat (Trilaksani, 2003). Air yang digunakan pada penyeduhan teh juga dapat memengaruhi kualitas minuman teh. Air dengan pH lebih dari 7, cenderung akan menghasilkan warna seduhan teh yang lebih gelap (Rohdiana, 2006). Konsumsi teh yang tergolong kental dapat menimbulkan sedikit masalah untuk orang yang konsumsi zat besinya rendah. Tanin yang terkandung dalam teh akan larut dan dapat mengganggu penyerapan zat besi dalam tubuh. Zat besi berikatan dengan tanin membentuk ikatan kompleks yang tidak larut pada sistem pencernaan makanan. Akibatnya, zat besi tak dapat diserap oleh tubuh dan akan dikeluarkan melalui feses. Ini dapat menyebabkan timbulnya anemia zat besi (Afriansyah, 2006).

B. LIPID B.1 Pencernaan Lipid Lipida merupakan senyawa yang kelarutannya kecil di dalam air. Senyawa ini dapat larut di dalam zat pelarut organik tidak polar. Pada umumnya, lipida ini bisa dibagi menjadi triasil gliserida, fosfo lipida, steroida, dan lain-lain (Martoharsono, 1978). Lipid, lipida, atau lemak secara umum dibutuhkan oleh manusia sebagai cadangan energi, komponen struktural membran sel, alat angkut vitamin, pemelihara suhu tubuh, dan pensinyalan molekul (Michelle et al. 1993; Almatsier 2006). Lipid di dalam tubuh berada dalam 4 bentuk, yaitu fosfolipid, trigliserida, asam lemak, dan sterol. Muchtadi et al. (2006) mengklasifikasikan lemak di dalam tubuh menjadi dua yaitu lemak

6

struktural dan lemak cadangan. Lemak struktural adalah lemak yang merupakan bagian yang dijumpai pada semua sel, jaringan, dan organ-organ. Lemak ini dapat berupa fosfolipid, glikolipid, dan kolesterol. Lemak cadangan adalah lemak sumber energi yang banyak ditemukan di jaringan adiposa. Lemak ini terdiri dari triasilgliserol dan sedikit kolesterol, vitamin larut lemak, dan senyawa larut lemak lainnya. Metabolisme lipid dibagi menjadi dua bagian yaitu eksogen dan endogen. Metabolisme eksogen memetabolisme lipid yang berasal dari makanan yang dimakan. Pencernaan lipid di dalam mulut dan lambung lebih banyak terjadi pada bayi dibandingkan orang dewasa, karena sistem pencernaan pada bayi terutama usus belum dapat bekerja dengan baik (Gurr, 1992). Lipid dicerna pertama kali di mulut, kemudian berikutnya di lambung partikel makanan akan bercampur dgn cairan lambung dan dipecah menjadi droplet-droplet halus dengan bantuan kontraksi lambung, droplet halus tersebut akan memudahkan enzim bekerja serta memudahkan terjadinya emulsifikasi karena luas area yang semakin banyak. (Berdanier et al., 2006). Emulsifikasi bertujuan untuk membetuk misel sehingga lemak yang tidak larut air dapat bersatu dengan enzim lipolitik yang bersifat larut dalam air. Misel cenderung membentuk agregat sehingga perlu distabilkan dengan garam empedu dari duodenum. Garam empedu merupakan agen pengemulsi yang kuat dengan dua sisi (hidrofobik dan hidrofilik). Dalam duodenum droplet-droplet tersebut dilarutkan oleh garam empedu. Trigliserida yang telah teremulsifikasi siap dicerna oleh lipase hasil sekresi pankreas menjadi asam lemak dan monogliserida (Wirahadikusumaha, 1977). Lemak simpanan di dalam tubuh tidak hanya berasal dari konsumsi lipid melainkan juga dari konsumsi karbohidrat dan protein. Selain itu, menurut Almatsier (2001), tubuh mempunyai kapasitas tidak terhingga untuk menyimpan lipid. Oleh karena itu, jika lemak simpanan berlebih di dalam tubuh maka resiko terhadap kelebihan berat badan akan meningkat yang kemudian pada akhirnya akan berdampak pada obesitas. Hal tersebut tentunya akan sangat merugikan tubuh, mengingat bahwa obesitas memiliki asosiasi atau hubungan yang sangat erat dengan munculnya penyakit kronis dan gangguan fungi fisiologis seperti penyakit kardiovaskuler, hipertensi, diabetes mellitus, dan kanker. Beberapa senyawa bioaktif dapat menurunkan penyerapan lipid antara lain dengan cara menghambat aktivitas lipase pankreas, berikatan dengan senyawa lipid misalnya kolesterol, berikatan dengan asam empedu yang diperlukan untuk emulsi lipid dan mengganggu stabilitas misel (Kirana et al., 2005).

B.2 Lipase Enzim adalah satu atau beberapa gugus polipeptida (protein) yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia. Enzim bekerja dengan cara menempel pada permukaan molekul zat-zat yang bereaksi dan dengan demikian mempercepat proses reaksi. Percepatan terjadi karena enzim menurunkan energi pengaktifan yang dengan sendrinya akan mempermudah terjadinya reaksi (Wirahadikusumahb, 1977). Sebagian besar enzim bekerja secara spesifik, yakni hanya dapat bekerja pada satu macam senyawa. Hal ini disebabkan perbedaan struktur kimia setiap enzim yang bersifat tetap. Setiap enzim membutuhkan suhu dan pH optimal yang berbeda-beda. Di luar pH dan suhu tersebut, enzim tidak dapat bekerja secara optimal, bahkan strukturnya akan mengalami kerusakan (Winarno, 1987). Suhu optimal lipase adalah 30-40˚C, aktivitas akan berkurang pada suhu dibawah 30˚C dan diatas 40˚C, sedangkan pH optimal yang dimiliki lipase adalah 6-9 (Salleh et al., 2006). Kisaran pH optimum ini tergantung pada sumber lipase. Enzim lipase dapat diperoleh dari beberapa sumber diantaranya adalah jaringan mamalia, susu, tumbuhan, dan mikroba. Lipase yang diperoleh dari pankreas babi bekerja pada pH optimum 7.9 (Kumar, 2003; Kuo dan Gardner, 2005).

7

Lipase beperan utama dalam penguraian lipid untuk mengabsorbsi lemak (Shin et al., 2003). Lipase dapat larut dalam air dan bekerja dengan mengkatalisis hidrolisis ikatan ester dalam substrat lipid yang tidak larut dalam air seperti trigliserida menjadi digliserida dan asam lemak. (Tarigan, 2009). Enzim lipase merupakan salah satu kelompok enzim yang penting, karena berperan dalam metabolisme, terutama dalam degradasi lemak. Menurut sistem IUB (International Union of Biochemistry), enzim lipase diklasifikasikan sebagai enzim hidrolase dengan nama sistematik gliserol ester hidrolase dengan nama sistematik gliserol ester hidrolase (EC 3.1.1.3), yang menghidrolisis trigliserida menjadi asam lemak bebas (ALB), gliserida parsial (monogliserida atau digliserida), dan gliserol (Winarno, 2010). Enzim lipase memiliki gugus polar dan non polar. Pada lingkungan aqueous gugus non polar (hidrofobik) berada di dalam struktur enzim dan gugus polar (hidrofilik) berada di luar, dan sebaliknya. Enzim lipase yang berasal dari mamalia dikelompokkan berdasarkan sumbernya menjadi: lipase pada sistem pencernaan seperti lingual, lambung, dan pankreas; lipase jaringan seperti hati, paru-paru, dan ginjal; lipase dalam air susu. Akan tetapi hanya lipase pankreas yang telah banyak diteliti. Lipase dari pankreas babi paling banyak telah dipelajari dan digunakan dalam beberapa penelitian. Hal ini mungkin karena pankreas babi mengandung lipase yang tinggi, sekitar 2.5 persen dari jumlah protein dalam pankreas. Enzim lipase disintesis oleh sel-sel parenkim pankreas dan ditransfer ke permukaan luminar usus halus untuk menghidrolisis substrat. Substratnya berupa lemak/minyak dari makanan dalam bentuk trigliserida. Lipase pankreas menghidrolisis 50-70% dari total lemak dari makanan (Birari dan Buthani, 2007). Lipase pankreas bekerja pada daerah permukaan minyak air dan titik-tik lipid yang teremulsi secara halus dibentuk oleh gerakan mekanis dalam usus dengan adanya garam empedu. Semakin aktif kerja enzim, maka lemak dan minyak yang dihidrolisis semakin banyak. Monogliserida yang diserap oleh usus halus dan disimpan sebagai cadangan lemak dalam jaringan adiposa akan meningkat sehingga mengakibatkan tumpukan lemak.

C. ANTILIPASE Kerja enzim dipengaruhi oleh beberapa faktor dan salah satu diantaranya adalah inhibitor. Penghambatan aktivitas enzim oleh beberapa jenis molekul kecil dan ion-ion sangat penting karena merupakan mekanisme pengendalian kerja enzim secara biologis. Penghambatan enzim dikelompokkan menjadi penghambatan yang reversible (tidak stabil) dan penghambatan irreversible (stabil) (Nielsen, 2010). Dalam pengikatan yang irreversible, senyawa penghambat (inhibitor) akan terikat secara kovalen pada lokasi aktif enzim atau sedikitnya senyawa tersebut terikat sedemikian kuat sehingga disosiasi terjadi sangat lambat (Winarno, 2010). Selain itu, Poedjiadi (2005) menambahkan bahwa hambatan irreversible ini dapat terjadi karena inhibitor bereaksi tidak reversible dengan bagian tertentu pada enzim, sehingga mengakibatkan berubahnya bentuk enzim dan menyebabkan aktivitas katalitiknya menurun. Penghambatan reversible dapat dibagi menjadi 3 golongan, yaitu penghambatan kompetitif, penghambatan nonkompetitif, dan penghambatan unkompetitif. Penghambat kompetitif adalah inhibitornya merupakan senyawa yang mirip dengan substrat dan dapat terikat pada sisi aktif enzim. Dengan cara ini, maka inhibior menghalangi masuknya substrat ke sisi aktif enzim (Bisswanger, 2008). Pada penghambatan nonkompetitif, senyawa penghambatnya tidak mirip dengan substrat, jadi sisi aktif masih terisi oleh substrat yang normal tetapi senyawa penghambat membentuk lekukan pada bidang permukaan enzim lain. Akibatnya reaksi enzimatik masih berlangsung (Winarno, 2010). Sedangkan, penghambatan unkompetitif merupakan senyawa yang berikatan secara reversibel pada

8

molekul kompleks enzim substrat, membentuk kompleks Enzim Substrat Inhibitor (ESI) yang bersifat inaktif sehingga tidak dapat menghasilkan produk (Bisswanger, 2008). Antilipase merupakan suatu senyawa yang dapat menginhibisi kerja enzim lipase baik secara irreversible maupun reversible. Tanin dari alga Phaeopyta, toxin caulerpenyne dari alga Caulerpa taxifolia, karotenoid dari Undaria pinnatifidaaiai dan Sargassum fulvellum merupakan beberapa contoh pangan hasil laut yang potensial menghambat aktivitas enzim lipase (Bitou et al. 1999; Matsumoto et al. 2010). Selain itu, kerja enzim lipase dapat dihambat oleh beberapa ekstrak yang dibuktikan pada penelitian terdahulu yaitu pada tanaman berry (McDougall at al., 2009), Actinidia arguta dan flavangenol (Jang et al., 2008; Shimada et al., 2009), Kochia scoparia (Han et al., 2006), jati belanda (Iswantini et al., 2003), Zingiber officinale Roscoe (Han et al., 2005), buah asam gelugur, rimpang lengkuas, dan kencur (Iswantini et al., 2011), tanaman bangle (Martatilofa, 2008), ekstrak air tanaman teh oolong (Rahardjo, 2005), rosela (Urifah, 2011), dan daun teh (McDougall et.al, 2010). Berbagai macam senyawa antilipase yang telah diteliti pada ekstrak tanaman ditunjukkan pada Tabel 3. Komponen bioaktif pada tanaman berry yang mampu menghambat kerja enzim lipase diduga tanin beserta turunannya seperti proanthocyanidin (McDougall et al.,2010). Pada pengujian aktivitas inhibisi lipase oleh ekstrak rosela, penghambatan yang terjadi adalah penghambatan unkompetitif (Urifah, 2011). Sementara itu, berdasarkan penelitian Gondoin et al. pada tahun 2010, teh putih memiliki aktivitas lebih tinggi daripada teh hijau dan teh hitam. Senyawa dalam teh putih yang berperan dalam menghambat aktivitas lipase adalah strictinin dan flavan-3-ol. Strictinin dapat berikatan secara langsung dengan enzim lipase sehingga menghambat kerja enzim dalam mengikat substrat. Penelitian ini melakukan pengujian aktivitas enzim lipase yang terdapat pada ekstrak teh hijau. Sebagai kontrol positif yang digunakan dalam penelitian adalah Orlistat. Orlistat merupakan obat yang telah terbukti dapat menghambat kerja enzim lipase. Orlistat memiliki rumus molekul C29H53NO5 dan beratmolekul 495.73482 (PubChem, 2005). Sjostrom et al. (2000) menyatakan bahwa penggunaan Orlistat diikuti dengan pola makan sehat akan memberikan hasil penurunan berat badan 70% lebih besar daripada hanya sekedar diet saja. Rissanen et al. (1999) juga menyatakan bahwa dengan Orlistat, seseorang dapat menurunkan berat badan rata-rata sekitar 14.5% dari berat tubuh awal. Selain itu, penelitian tentang Orlistat menunjukkan bahwa 2 kali lebih banyak penderita kegemukan yang mengkonsumsi Orlistat, mencapai 10% penurunan berat badan dibandingkan mereka yang diet saja (Krempf et al. 2001). Dalam penelitiannya, Sjostrom et al. (2000) menyatakan bahwa Orlistat menghambat enzim lipase secara irreversible dengan cara membentuk suatu ikatan kovalen pada bagian serine yang aktif dari lipase pankreas dan lambung. Mekanisme penghambatan lipase oleh Orlistat dapat dilihat pada Gambar 2.

Gambar 2. Mekanisme penghambatan Orlistat (Carriere et al. 2001)

9

Tabel 3. Berbagai macam senyawa antilipase dari ekstrak tanaman Komponen

Tanaman Sumber

Flavonoid

Lesser galangal, dandelion, dan kiwi, jati belanda

Polyphenol

Kacang tanah, mangga, alfalfa, bunga lotus, dan kotala himbutu

Proanthocyanidin Saponin

Noname Herba, cinnamon, coklat, anggur Horse chestnut, bearberry, marlberry, oat, kopi, yam, gingseng, sessiloside, cape jasmine, burningbush, apel, balsampear, zaitun,doraji, soapberry, pincus hion, tomat, jahe, jati belanda, dan bangle Salvia, lidah buaya, birch, potmarigold, lemon balm, dan oregano

Triterpen Trigonellin Hydroxycitric acid Tanin escin saponin

T. foenum-graecum Garcinia Cambodia Areca catechu A. turbinata escins Teh china

chakasaponin I, II, & III (Garza et al., 2011; Bhutani dan Gohil, 2010; Tucci et al., 2010; Tanaka et al., 2009; Silitonga, 2008)

10

III. METODOLOGI PENELITIAN A. BAHAN DAN ALAT Sampel yang digunakan dalam penelitian ini adalah ekstrak teh hijau. Teh hijau diperoleh dari PT Perkebunan Nusantara Gunung Mas, Bogor. Bahan-bahan yang digunakan adalah lipase pankreas babi tipe II (Sigma L3126), p-nitrofenil laurat (pNP laurat 61716-1G), CH3COONa, triton X-100, Tris buffer pH 8.2, air suling, HCl, NaOH, Folin-Ciocalteu 50% (v/v), etanol 95%, Na2CO3 5% (w/v), asam galat, butanol-HCL (95:5 v/v), reagen Ferric (2% ferric ammonium sulfat di dalam HCL 2N), HCL 11.96 N, NaOH 10 N dan kertas Whatman No.42. Peralatan yang digunakan dalam penelitian ini antara lain botol semprot, gelas piala, neraca analitik, sendok, termometer, stopwatch, kain saring, gelas pengaduk, tabung sentrifus, sentrifus 3500 rpm dan 4000 rpm, hot plate, penyaring vakum, gelas ukur, labu takar, tabung reaksi, rak tabung reaksi, pipet volumetrik, sudip, pipet tetes, mikropipet, bulb, pH meter, kuvet, UV-vis spektrofotometer double-beam, waterbath, dan vortex.

B. METODE PENELITIAN Penelitian ini dilakukan dalam dua tahap, yaitu pembuatan ekstrak teh pada berbagai kondisi penyeduhan dan pengujian pengaruh simulasi pH pencernaan. Untuk setiap ekstrak teh awal dan ekstrak teh hasil simulasi pH pencernaan dilakukan tiga analisis, yaitu kadar total fenol, kadar tanin terkondensasi, dan kemampuan inhibisi lipase. Analisis total fenol dan tanin terkondensasi dilakukan sebagai uji pendukung guna menduga senyawa apakah dalam teh hijau yang dapat berperan sebagai inhibisi lipase. Diagram alir metode penelitian dapat dilihat pada Gambar 2. Teh Hijau Diseduh pada berbagai kondisi (suhu awal penyeduhan 70, 85, 100˚C; waktu penyeduhan 5, 10, 15 menit)

Ekstrak awal teh hijau Diberi perlakuan simulasi pH sistem pencernaan (treated extract)

Ekstrak teh hijau simulasi sistem pencernaan Dianalisis: - Total fenol - Tanin terkondensasi Inhibisi lipase

Gambar 2. Diagram alir penelitian

11

B.1. Tahap Pembuatan Ekstrak Teh Awal Teh hijau diblender kering sampai menghasilkan partikel halus (30 mesh) yang homogen. Konsentrasi teh hijau dibuat sama, yaitu 0.02 g/ml (2 gram teh dilarutkan dengan 100 ml air). Proses ekstraksi dilakukan menggunakan beberapa kondisi ekstraksi, yaitu ekstraksi pada suhu 70˚C, 85˚C, dan 100˚C dan dengan waktu selama masing-masing 5 menit, 10 menit, dan 15 menit. Diagram alir pembuatan ekstrak teh awal dapat dilihat pada Gambar 3.

Serbuk teh hijau (2 gram)

Diseduh dengan 100 ml air bersuhu 70, 85, 100˚C Didiamkan 5, 10, 15 menit Disaring dengan kain saring Disentrifus 3500 rpm 10 menit Disaring vakum Filtrat Ditepatkan hingga volume 100 ml

Ekstrak awal teh hijau Gambar 3. Diagram alir pembuatan ekstrak teh hijau Sampel teh hijau ditimbang sebanyak 2 gram, kemudian diseduh dengan 100 ml air destilata (pada suhu 70˚C, 85˚C, 100˚C, selama 5 menit, 10 menit, 15 menit). Teh yang telah diseduh, disaring menggunakan kain saring sebanyak 2 lapis dan kemudian disentrifus 3500 rpm pada suhu ruang selama 10 menit. Supernatan diambil untuk kemudian disaring menggunakan penyaring vakum dengan kertas saring Whatman No.42. Setelah itu ekstrak teh ditepatkan hingga 100 ml dengan air destilata. Ekstrak teh hijau awal yang dihasilkan kemudian dianalisis kadar total fenol, kadar tanin terkondensasi, dan kemampuan inhibisi lipase. B.2. Tahap Pengujian Pengaruh Simulasi pH Sistem Pencernaan Pada tahap ini, ekstrak teh awal diberi perlakuan yaitu pengaturan pH yang menyerupai pH sistem pencernaan manusia. Pada tahap awal dilakukan pengukuran nilai pH ekstrak awal teh hijau,

12

lalu diatur pH nya hingga menjadi pH 2, kemudian didiamkan selama 30 menit, dan dinaikkan menjadi pH 6.8. Ekstrak yang telah diberi perlakuan simulasi pencernaan ini kemudian dianalisis total fenol, kadar tanin terkondensasi, dan inhibisi lipase.

C. ANALISIS Analisis yang dilakukan pada ekstrak awal teh hijau dan ekstrak teh hijau setelah simulasi sistem pH pencernaan adalah: C.1. Pengukuran nilai pH Khusus untuk nilai pH, pengukuran hanya dilakukan pada ekstrak awal teh hijau. Setelah didapatkan ekstrak awal teh hijau, nilai pH diukur dengan menggunakan pH meter. Pada setiap perlakuan penyeduhan, pengukuran nilai pH dilakukan sebanyak tiga kali. C.2. Pengukuran Kadar Total Fenol Pengukuran kadar total fenol mengikuti prosedur Strycharz dan Shetty (2002) yang diacu oleh Zega (2010) dengan sedikit memodifikasi yaitu bahan-bahan yang direaksikan menggunakan setengah formula. Ekstrak teh hijau sebanyak 0.5 ml dimasukkan ke dalam tabung reaksi, kemudian ditambahkan 2.5 ml reagen Folin-Ciocalteu 50% (v/v), 0.5 ml etanol 95% dan 2.5 ml aquades. Setelah didiamkan selama 5 menit, 0.5 ml Na2CO3 5% (w/v) ditambahkan lalu divorteks dan disimpan pada ruangan gelap selama 60 menit. Sampel divorteks kembali, absorbansinya diukur pada 725 nm. Pengukuran kadar total fenol pada masing-masing ekstrak perlakuan penyeduhan dilakukan sebanyak dua kali ulangan dan duplo. Sebagai standar digunakan asam galat. Pembuatan standar asam galat yaitu dengan cara membuat larutan induk 250 mg/l. Larutan standar kemudian dibuat lima seri pengenceran berturut-turut 50, 100, 150, 200 dan 250 mg/l. Penentuan kurva standar dilakukan sama dengan penentuan sampel. Perhitungan total fenol sampel berdasarkan hasil ploting nilai absorbansi pada kurva standar. Setelah didapatkan nilai total fenol dalam ppm atau mg/L, nilai tersebut dikonversi ke dalam mg GAE/g BK dengan rumus: mg GAE/g BK = konsentrasi x vol larutan yang diuji (ml) x pengenceran x

(

)

C.3. Penetapan Kadar Tanin Terkondensasi oleh Butanol-HCl Penetapan kadar tanin terkondensasi ilakukan mengikuti prosedur Porter et al. (1986). Ekstrak teh hijau sebanyak 0.5 ml dimasukkan ke dalam tabung reaksi bertutup, ditambahkan 3 ml nbutanol-HCl (95:5) dan 0.1 ml reagen Ferric (2% ferric ammonium sulfate di dalam 2N HCl), kemudian divorteks. Tabung reaksi bertutup tersebut dimasukkan ke dalam penangas air mendidih selama 60 menit, kemudian didinginkan dan diukur absorbansinya pada panjang gelombang 550 nm. Pengukuran kadar tanin terkondensasi dilakukan sebanyak dua kali ulangan dan duplo. Setelah didapat nilai absorbansi nya, kadar tanin terkondensasi dalam satuan g/100g BK dapat dihitung dengan rumus: absorbansi sampel x 78.26 x ml larutan yang diuji x pengenceran x

(

)

x

C.4. Pengukuran Inhibisi Lipase Secara In Vitro Pengujian dilakukan mengikuti prosedur McDougall et al (2009) dengan sedikit modifikasi dalam komposisi larutan yang digunakan. Lipase pankreas babi tipe II (Sigma L3126) dilarutkan dalam air suling (10 mg/ml. Untuk penentuan aktivitas secara in vitro digunakan Tris buffer pH 8.2 100 mM dan p-nitrofenillaurat (pNP-laurat) digunakan sebagai substratnya. Stok substrat 0.08%

13

berat/volume pNP laurat dilarutkan dalam 5mM sodium asetat (pH 5) yang mengandung 1% triton X100 kemudian dipanaskan pada air mendidih selama 2 menit agar didapatkan larutan yang sempurna kemudian didinginkan pada suhu ruang. Jumlah substrat, enzim, dan buffer yang digunakan dalam kontrol A, kontrol B, sampel, dan blangko mengacu pada komposisi Tabel 4. Sampel diinkubasi pada suhu 37oC selama 2 jam dan kemudian diinaktivasi enzimnya pada air mendidih selama 5 menit. Pada masing-masing sampel ditambahkan air dengan jumlah sesuai dengan prosedur kerja. Sampel-sampel lalu disentrifugasi pada 4000 rpm selama 15 menit dan dibaca pada UV spektrofotometer 410 nm. Pengujian daya inhibisi lipase dilakukan sebanyak dua kali ulangan dan duplo. Kontrol positif yang digunakan pada pengujian ini adalah Orlistat yakni berupa tablet xenical 1.2 mg/ml yang diperoleh pelarutan 1 tablet xenical (120 mg Orlistat) dalam 100 ml air destilata. Kontrol A digunakan untuk mengetahui absorbansi dari pNp (produk hidrolisis berwarna kuning) ketika reaksi berlangsung optimal tanpa adanya senyawa penghambat dari ekstrak teh hijau, sedangkan sampel digunakan untuk mengetahui absorbansi dari pNp ketika reaksi berlangsung dengan adanya senyawa penghambat dari ekstrak teh hijau. Blanko digunakan untuk mengetahui absorbansi dari substrat awal tanpa adanya ekstrak teh hijau sedangkan kontrol B digunakan untuk mengetahui absorbansi dari substrat awal ditambah ekstrak teh hijau. Tabel 4. Komposisi larutan pada analisis inhibisi lipase Blangko Kontrol A Kontrol B Ekstrak 50 Buffer 400 400 400 Enzim 150 Substrat 450 450 450 Aquades 4150 4000 4100 Sumber: McDougall GJ et al, 2009, modifikasi

Sampel 50 400 150 450 3950

Aktivitas inhibisi sampel dihitung menggunakan rumus sebagai berikut: % inhibisi =

%

Keterangan: A1 = Absorbansi kontrol A - Absorbansi blanko A2 = Absorbansi sampel - Absorbansi kontrol B

D. ANALISIS DATA Data-data yang diperoleh dianalisis secara statistik menggunakan Rancangan Acak Lengkap dua faktor (Univariate Analysis), Rancangan Faktorial (One Way Anova), dan uji beda berpasangan (T-Test Praid) serta uji korelasi (Pearson Correlation). RAL dua faktor (Univariate Analysis) dilakukan untuk mengetahui pengaruh perlakuan penyeduhan (suhu, waktu, dan interaksi antar keduanya) terhadap daya inhibisi, nilai pH awal, total fenol, dan kadar tanin terkondensasi ekstrak teh hijau. Jika perlakuan memberikan pengaruh yang nyata, maka pengujian dilanjutkan dengan analisis beda Duncan pada taraf 5% untuk mengetahui pengaruh antar perlakuan. Rancangan Faktorial (One Way Anova) dilakukan untuk membandingkan daya inhibisi enzim lipase ekstrak teh hijau dengan Orlistat. Uji t-test dua berpasangan digunakan untuk mengetahui pengaruh simulasi pH pencernaan pada ekstrak teh hijau terhadap daya inhibisi enzim lipase, total fenol, dan kadar tanin terkondensasi. Uji korelasi digunakan untuk mengetahui hubungan antara daya inhibisi dengan total fenol dan daya inhibisi dengan kadar tanin terkondensasi ekstrak teh hijau.

14

IV. HASIL DAN PEMBAHASAN A. EKSTRAKSI TEH HIJAU Pada penelitian ini, proses ekstraksi teh hijau dilakukan dengan cara penyeduhan. Menurut Astill et al. (2001), perbedaan cara penyeduhan teh dapat memengaruhi komposisi senyawa kimia yang terdapat pada produk akhir minuman teh. Perbedaan cara penyeduhan yang dimaksud diantaranya ialah jumlah teh dan air yang digunakan (konsentrasi teh), jumlah pengadukan, suhu penyeduhan, waktu penyeduhan dan penambahan bahan lain seperti gula. Penelitian ini menggunakan teh hijau sebanyak 2 gram yang diseduh dengan 100 ml air. Menurut Laresolo (2008), penyeduhan teh sebanyak 2 gram dalam 100 ml air akan menghasilkan teh dengan cita rasa yang pas. Formulasi ini juga sesuai dengan konsumsi masyarakat Indonesia pada umumnya. Air yang digunakan untuk menyeduh teh juga berpengaruh terhadap kualitas minuman teh. Pada penelitian ini, teh diseduh dengan menggunakan air destilata. Menurut Rohdiana (2006), penggunaan air yang mengandung mineral Ca/Mg atau air sadah akan mempersulit proses ekstrak teh sehingga ekstraksi menjadi tidak maksimal dan hasilnya menjadi kurang pekat. Ekstraksi teh dilakukan dengan memvariasikan suhu dan waktu. Suhu awal penyeduhan yang digunakan adalah 70˚C, 85˚C, dan 100˚C. Suhu 70˚C digunakan karena merupakan suhu air hangat pada dispenser. Sebagian masyarakat Indonesia melakukan penyeduhan teh dengan menggunakan air panas pada dispenser dan sebagian lagi menggunakan air yang dimasak hingga mendidih. Suhu 100˚C merupakan suhu dimana air mendidih. Sementara untuk suhu 85˚C digunakan karena merupakan suhu yang terletak diantara keduanya. Suhu penyeduhan ini cenderung menurun seiring lamanya waktu penyeduhan. Oleh karena itu, perlu dilakukan pengecekan suhu akhir dengan tujuan untuk mengetahui kisaran temperatur selama penyeduhan. Data suhu akhir ekstrak teh hijau ditunjukkan pada Tabel 5. Tabel 5. Suhu akhir ekstrak teh hijau Perlakuan penyeduhan

Suhu Akhir (˚C)

70˚C 5 menit 70˚C 10 menit 70˚C 15 menit

58 53 47

85˚C 5 menit 85˚C 10 menit 85˚C 15 menit

67 59 48

100˚C 5 menit 100˚C 10 menit 100˚C 15 menit

68 60 56

Waktu yang digunakan dalam penelitian ini yaitu waktu penyeduhan selama 5 menit, 10 menit, dan 15 menit. Hal ini dilihat dari kebiasaan masyarakat Indonesia, yaitu teh yang baru diseduh, didiamkan terlebih dahulu guna menunggu teh dengan suhu tidak terlalu panas saat diminum. Variasi waktu penyeduhan ini bertujuan untuk mengetahui perbedaan kadar total fenol, kadar tanin terkondensasi, dan nilai inhibisi enzim lipase oleh komponen bioaktif yang terdapat di dalam teh yang diseduh dengan waktu berbeda.

15

B. NILAI pH EKSTRAK TEH HIJAU Pengukuran pH merupakan prosedur penting karena pH menentukan banyak peranan penting dar struktur dan aktivitas makromolekul biologi seperti aktivitas katalitik enzim (Lehninger, 1993). Nilai pH menunjukkan konsentrasi ion hidrogen yang menggambarkan tingkat keasaman. Semakin tinggi nilai pH berarti tingkat keasaman akan semakin rendah dan sebaliknya, semakin rendah pH berarti semakin tinggi tingkat keasamannya (Lehninger, 1982). Pengukuran nilai pH pada ekstrak awal teh hijau dilakukan dengan tujuan mengetahui kisaran pH ekstrak teh hijau sebelum diperlakukan simulasi sistem pencernaan. Nilai pH ekstrak awal teh hijau adalah 5.83 (70˚C 5’), 5.90 (70˚C 10’), 5.65 (70˚C 15’), 5.66 (85˚C 5’), 5.73 (85˚C 10’), 5.73 (85˚C 15’), 5.74 (100˚C 5’), 5.64 (100˚C 10’), dan 5.58 (100˚C 15’). Dari data tersebut terlihat bahwa nilai pH ekstrak awal teh hijau bersifat asam yaitu berada di pH 5.5 sampai dengan 5.9. Lehninger (1982) menyatakan bahwa larutan yang mempunyai pH lebih kecil dari 7 akan bersifat asam karena konsentrasi H+ lebih besar daripada konsentrasi OH-. Berdasarkan data yang diperoleh, nilai pH ekstrak teh hijau yang dihasilkan bersifat asam. Dari Lampiran 1, diketahui bahwa perlakuan suhu, lamanya waktu penyeduhan, dan interaksi antara suhu dan waktu penyeduhan teh hijau tidak berpengaruh pada nilai pH ekstrak teh hijau (p > 0.05). Setelah diketahui nilai pH awal, ekstrak teh hijau disimulasikan sesuai dengan sistem pH pencernaan. Ekstrak diturunkan pH nya menjadi pH 2 yang merupakan kondisi pH pada lambung, ditunggu 30 menit, dan kemudian dinaikkan lagi pH nya menjadi pH 6.8 yang merupakan pH usus halus. Lamanya waktu yang dibutuhkan makanan untuk berada di dalam tergantung dari jenis makanan dan jumlah yang dimakan. Aryani (2011) menyatakan bahwa diperlukan waktu sekitar 30 menit untuk makanan cair atau minuman mengalir dari lambung ke usus kecil. Sementara itu kondisi di lambung sangat asam yakni pH nya sekitar 1-2. Miller (1998) menambahkan bahwa waktu yang diperlukan lambung untuk mencerna minuman adalah sekitar 30 menit. Setelah keluar dari lambung, makanan setengah cair yang memiliki pH sekitar netral akan bercampur dengan enzim-enzim pencernaan yang diproduksi oleh pankreas (Siregar, 2004), seperti enzim lipase yang merupakan enzim pencernaan lipid.

C. KADAR TOTAL FENOL Senyawa fenolik ialah senyawa dengan suatu gugus OH yang terikat pada cincin aromatik (Vermerris dan Nicholson, 2008). Pengukuran kadar total fenol dilakukan pada ekstrak awal teh hijau dan juga pada ekstrak teh hijau setelah simulasi sistem pencernaan. Penentuan kadar total fenol dilakukan dengan tujuan mengetahui kadar total fenol pada ekstrak teh hijau baik sebelum maupun setelah simulasi sistem pencernaan. Senyawa polifenol ini diduga merupakan senyawa yang akan menghambat aktivitas enzim lipase di dalam pencernaan. Sudah banyak penelitian yang melaporkan bahwa senyawa polifenol memiliki andil dalam menghambat aktivitas enzim. Haslam et al. (1999) diacu dalam Ali (2002) menyatakan bahwa pembentukan kompleks protein-fenol disebabkan salah satunya oleh adanya ikatan hidrogen antara gugus hidroksil fenolik dengan gugus NH- dan CO- pada protein dan juga terjadinya ikatan kovalen dan hidrofobik pada reaksi tersebut. Polifenol teroksidasi berinteraksi lebih kuat dengan protein (Siebert1999 diacu dalam Ali 2002) dan dapat berinteraksi dengan asam amino yang dapat menghambat aktivitas enzim (Millic et al. 1968 diacu dalam Ali 2002). Penentuan kadar total fenol didapatkan dari kurva larutan standar asam galat seperti dapat dilihat pada Lampiran 3. Penentuan kadar total fenol dilakukan menggunakan metode Folin

16

Ciocalteau didasarkan pada reaksi oksidasi-reduksi. Reagen folin yang terdiri dari asam fosfomolibdat dan asam fosfotungstat akan tereduksi oleh senyawa polifenol menjadi molibdenumtungsten (The Grape Seed Method Evaluation Comittee, 2001). Hasil dari reaksi ini membentuk kompleks warna biru. Semakin tinggi komponen polifenol yang terdapat di dalam teh, maka semakin banyak molibdenum-tungsten yang terbentuk, sehingga semakin besar nilai absorbansinya, dan sebaliknya. Standar polifenol yang digunakan pada pengukuran kadar fenol adalah asam gallat (asam 3,4,5-hidroksibenzoat). Nilai total fenol dinyatakan dalam Gallic Acid Equivalent (GAE)/g basis kering (BK). Pengukuran total fenol pada ekstrak awal teh hijau dilakukan dengan tujuan mengetahui kadar total fenol pada ekstrak awal teh hijau sebelum diperlakukan simulasi sistem pencernaan. Total fenol yang dihasilkan memiliki nilai yang berkisar antara 29.59 mg GAE/g BK sampai 47.14 mg GAE/g BK. Nilai total fenol pada ekstrak awal teh hijau (dalam mg GAE/g BK) adalah 32.37 (70˚C 5’), 29.59 (70˚C 10’), 35.99 (70˚C 15’), 42.53 (85˚C 5’), 43.87 (85˚C 10’), 44.21 (85˚C 15 menit), 46.75 (100˚C 5’), 47.17 (100˚C 10’), dan 46.10 (100˚C 15’). Berdasarkan Lampiran 4, perlakuan sampel memiliki pengaruh nyata terhadap total fenol (p < 0.05). Pada uji Duncan (Lampiran 5) dapat terlihat bahwa total fenol awal terendah ditunjukkan oleh ekstrak teh hijau perlakuan penyeduhan 70˚C selama 5 menit dan 10 menit. Sementara total fenol awal tertinggi adalah ekstrak teh hijau perlakuan penyeduhan 85˚C 10 dan 15 menit serta suhu penyeduhan 100˚C semua waktu. Dilihat dari analisis statistik (Lampiran 6), faktor suhu dan interaksi antara suhu dan waktu berpengaruh nyata pada total fenol ekstrak teh awal (p < 0.05). Dari uji lanjut Duncan terlihat bahwa masing-masing suhu penyeduhan menunjukkan perbedaan yang signifikan. Faktor waktu pada perlakuan penyeduhan tidak memberikan pengaruh nyata (p>0.05). Hal ini sejalan dengan penelitian yang dilakukan oleh Kusumaningrum tahun 2008 yang menunjukkan bahwa waktu penyeduhan tidak berpengaruh nyata terhadap total fenol (p>0.05). Sedangkan suhu penyeduhan teh hijau berpengaruh nyata terhadap total fenol seduhan. Kadar total fenol ekstrak teh awal terbesar ditunjukkan oleh ekstrak teh hijau dengan kondisi suhu penyeduhan 100˚C sedangkan nilai total fenol ekstrak teh awal terendah ditunjukkan oleh penyeduhan teh dengan suhu 70˚C. Semakin tinggi suhu penyeduhan maka makin tinggi total fenol yang terekstrak. Suhu tinggi pelarut dapat meningkatkan efisiensi dari proses ekstraksi karena panas dapat meningkatkan permeabilitas dinding sel, meningkatkan kelarutan dan difusi dari senyawa yang diekstrak, dan mengurangi viskositas pelarut, namun suhu yang terlalu tinggi dapat mendegradasi senyawa polifenol (Escribano dan Santos, 2002). Pengukuran total fenol juga dilakukan pada ekstrak teh hijau setelah simulasi sistem pencernaan. Pengukuran total fenol pada ekstrak teh hijau setelah simulasi sistem pencernaan dilakukan dengan tujuan mengetahui kadar total senyawa fenol yang masih terdapat di dalam ekstrak teh hijau apabila telah melalui simulasi sistem pencernaan. Total fenol yang dihasilkan berkisar antara 27.88 mg GAE/ g BK sampai 43.37 mg GAE/g BK. Nilai total fenol pada ekstrak teh hijau setelah simulasi sistem pencernaan (dalam mg GAE/g BK) adalah 28.63 (70˚C 5’), 27.88 (70˚C 10’), 29.80 (70˚C 15’), 40.96 (85˚C 5’), 40.38 (85˚C 10’), 40.24 (85˚C 15’), 43.03 (100˚C 5’), 43.37 (100˚C 10’), dan 41.75 (100˚C 15’). Berdasarkan Lampiran 8, perlakuan sampel memiliki pengaruh nyata terhadap total fenol (p < 0.05), kemudian pada uji Duncan, terlihat dua kelompok perlakuan yang tergolong berbeda. Perlakuan penyeduhan sampel dengan suhu 70˚C pada semua waktu merupakan perlakuan penyeduhan yang menghasilkan total fenol terendah. Sedangkan perlakuan penyeduhan dengan suhu 85˚C dan 100˚C memiliki total fenol tertinggi. Seluruh perlakuan menghasilkan total fenol yang tidak berbeda nyata.

17

Pada Lampiran 10, dapat dilihat bahwa faktor suhu memberikan pengaruh nyata pada kadar total fenol ekstrak teh hijau setelah simulasi sistem pencernaan (p < 0.05). Sedangkan faktor waktu dan interaksi antara suhu dan waktu tidak berpengaruh nyata pada kadar total fenol ekstrak teh hijau setelah simulasi sistem pencernaan (p > 0.05). Kemudian dilakukan uji lanjut menggunakan uji Duncan pada faktor suhu. Dari uji lanjut Duncan terlihat bahwa terdapat perbedaan yang cukup signifikan antara perlakuan suhu penyeduhan. Kadar total fenol pada ekstrak teh hijau setelah simulasi pencernaan yang terendah ditunjukkan oleh ekstrak teh hijau dengan suhu penyeduhan 70˚C, sedangkan kadar total fenol tertinggi ditunjukkan oleh ekstrak teh hijau dengan suhu penyeduhan 100˚C. Dilihat dari hasil statistik, faktor suhu penyeduhan ekstrak teh hijau memberikan pengaruh nyata baik pada ekstrak sebelum maupun setelah melalui simulai sistem pencernaan. Secara umum, ekstrak teh dengan suhu penyeduhan 70˚C memiliki kadar total fenol yang lebih kecil dibandingkan suhu penyeduhan 85˚C. Begitu pula pada ekstrak teh dengan suhu penyeduhan 85˚C memiliki kadar total fenol yang lebih kecil dibandingkan suhu penyeduhan 100˚C. Hal tersebut dapat dilihat dari Gambar 4, kadar total fenol baik pada ekstrak awal teh hijau maupun ekstrak setelah simulasi sistem pencernaan terus meningkat dari perlakuan suhu 70˚C selama 10 menit hingga perlakuan penyeduhan pada suhu 100˚C selama 10 menit. Dengan demikian, diuga komponen fenol akan lebih banyak terkestrak jika panas yang diberikan semakin tinggi. Menurut Kusumaningrum (2008), Semakin tinggi suhu penyeduhan maka makin tinggi total fenol yang terekstrak. Kadar total fenol yang tinggi pada perlakuan suhu 100˚C selama 10 menit menunjukkan bahwa komponen polifenol terekstrak dengan baik. Gambar 4 menunjukkan kadar fenol sebelum dan setelah simulasi sistem pH pencernaan.

50.00

total fenol (mg GAE/ g BK)

C 40.00 30.00

B A a

A

a

b

b

D

D

CD

CD

b

b

b

D b

a

20.00 10.00 0.00 70˚C 5 70˚C 10 70˚C 15 85˚C 5 85˚C 10 85˚C 15 100˚C 5 100˚C 10 100˚C 15 menit menit menit menit menit menit menit menit menit perlakuan penyeduhan ekstrak awal

ekstrak simulasi

*Keterangan: Huruf yang berbeda menunjukkan nilai total fenol yang berbeda nyata (p< 0.05) dengan uji Duncan

Gambar 4. Total fenol ekstrak teh hijau sebelum dan setelah simulasi pencernaan Semakin lama waktu ekstraksi, maka komponen polifenol yang larut akan semakin tinggi, tetapi pada waktu ekstraksi yang sangat lama justru akan menyebabkan senyawa polifenol rusak karena teroksidasi oleh panas. Hal tersebut didukung oleh data perlakuan penyeduhan suhu 100˚C

18

selama 15 menit yang menurun nilainya. Waktu ekstraksi yang terlalu lama akan mengakibatkan terjadinya pemaparan O2 semakin banyak, sementara terdapat beberapa komponen fenol yang bersifat termosensitif. Cheong et al.(2005) meneliti tentang stabilitas panas pada senyawa fenolik dan melaporkan bahwa kadar epikatekin dan epigalokatekin galat menurun seiring dengan kenaikan suhu sedangkan epikatekin galat meningkat jumlahnya, dengan penggunaan suhu 60, 80, dan 100°C dengan waktu 0-300 menit. Menurut Rohdiana (2006) kadar katekin menurun sebesar 20% jika dipanaskan pada suhu diatas 98˚C. Proses pemanasan dapat menyebabkan oksidasi dari komponen polifenol di dalam teh. Komponen polifenol, seperti katekin dapat teroksidasi menjadi theaflavin. Jika proses oksidasi berlanjut, theaflavin juga akan teroksidasi menjadi thearubigin. Hal itu dapat menyebabkan menurunnya pH teh karena thearubigin bersifat asam kuat (Lelani, 1995). Persen penurunan kadar total fenol pada ekstrak teh hijau sebelum dan setelah simulasi pH sistem pencernaan ditunjukkan pada Tabel 6. Tabel 6. Data total fenol ekstrak teh hijau Perlakuan penyeduhan

Total fenol ekstrak awal (mg GAE/g BK)

Total fenol ekstrak simulasi (mg GAE/g BK)

Penurunan (%)

70˚C 5' 70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10' 85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15'

32.37 29.59 35.99 42.53 43.87 44.21 46.75 47.17 46.10

28.63 27.88 29.8 40.96 40.38 40.24 43.03 43.37 41.75

11.55 5.78 17.20 3.69 7.95 8.98 7.96 7.97 9.44

D. KADAR TANIN TERKONDENSASI Menurut Hagerman (2002), tanin kebanyakan terdiri dari polimer flavonoid yang merupakan senyawa fenol. Golongan tanin yang banyak terdapat di teh adalah tanin terkondensasi (Shahidi et al., 2009). Pengukuran kadar tanin terkondensasi dilakukan dengan tujuan menduga lebih tepat senyawa apakah di dalam teh hijau yang dapat berperan sebagai inhibitor terhadap lipase. Pengukuran kadar tanin terkondensasi dilakukan pada ekstrak awal teh hijau dan ekstrak teh hijau setelah simulasi sistem pencernaan. Kadar tanin terkondensasi didapatkan dari perhitungan pada nilai absorbansi yang diperoleh yang kemudian dikonversi ke dalam satuan g LE (Leucocyanidin Equivalent) / 100 g BK. Pengukuran kadar tanin terkondensasi pada ekstrak awal teh hijau bertujuan untuk mengetahui kadar tanin terkondensasi yang terdapat pada ekstrak awal teh hijau sebelum melalui simulasi sistem pencernaan. Nilai kadar tanin pada ekstrak awal teh hijau (dalam g LE/100g BK) adalah 0.41 (70˚C 5’), 0.35 (70˚C 10’), 0.38 (70˚C 15’), 0.40 (85˚C 5’), 0.44 (85˚C 10’), 0.45 (85˚C 15’), 0.58 (100˚C 5’), 0.60 (100˚C 10’), dan 0.51 (100˚C 15’). Menurut Suryaningrum et al. (2007), kadar tanin terkondensasi pada ekstrak teh hijau adalah 83.503 ppm. Perbedaan nilai ini dapat disebabkan oleh perbedaan komposisi kimia dari daun teh asal dan juga karena proses ekstraksi.

19

Suryaningrum melakukan proses ekstraksi pada teh hijau dengan kondisi penyeduhan 80˚C selama 8 menit. Dari data yang didapatkan terlihat adanya peningkatan kadar tanin terkondensasi dari suhu penyeduhan 70˚C selama 10 menit hingga suhu penyeduhan 100˚C selama 10 menit. Berdasarkan Lampiran 14, perlakuan sampel memiliki pengaruh nyata terhadap kadar tanin terkondensasi (p < 0.05), kemudian pada uji Duncan, terlihat beberapa kelompok perlakuan yang tergolong berbeda. Hal ini berarti terdapat perbedaan yang cukup signifikan pada masing-masing perlakuan sampel. Perlakuan penyeduhan ekstrak teh hijau yang memiliki kadar tanin terkondensasi tertinggi adalah ekstrak teh hijau dengan suhu awal penyeduhan 100˚C selama 5 dan 10 menit. Berdasarkan analisis statistik (Lampiran 16), dapat dilihat bahwa faktor suhu, waktu, dan interaksi antara suhu dan waktu berpengaruh pada kadar tanin terkondensasi pada ekstrak awal teh hijau (p < 0.050). Pada uji Duncan terlihat adanya perbedaan yang signifikan antara ketiga perlakuan suhu penyeduhan. Pada umumnya, kadar tanin terkondensasi pada ekstrak awal teh hijau terbesar ditunjukkan oleh teh hijau dengan suhu penyeduhan 100˚C, sedangkan kadar tanin terkondensasi terendah ditunjukkan oleh ekstrak teh hijau dengan suhu penyeduhan 70˚C. Untuk faktor waktu, penyeduhan teh hijau selama 15 menit menunjukkan perbedaan yang signifikan. Pengukuran kadar tanin terkondensasi pada ekstrak teh hijau setelah simulasi sistem pencernaan bertujuan untuk mengetahui kadar tanin terkondensasi setelah mengalami perlakuan simulasi sistem pencernaan, apakah terdapat perbedaan kadar tanin terkondensasi yang kemungkinan dipengaruhi oleh pH pencernaan. Nilai kadar tanin pada ekstrak teh hijau setelah simulasi sistem pencernaan (dalam g LE/100 g BK) adalah 0.40 (70˚C 5’), 0.34 (70˚C 10’), 0.37 (70˚C 15’), 0.39 (85˚C 5’), 0.42 (85˚C 10’), 0.45 (85˚C 15’), 0.50 (100˚C 5’), 0.59 (100˚C 10’), dan 0.49 (100˚C 15’). Berdasarkan Lampiran 18, perlakuan sampel memiliki pengaruh nyata terhadap kadar tanin terkondensasi (p < 0.05) pada ekstrak setelah simulasi sistem pencernaan, kemudian pada uji Duncan, terlihat perbedaan yang cukup signifikan pada masing-masing perlakuan sampel. Perlakuan penyeduhan dengan suhu awal penyeduhan 100˚C selama 10 menit menghasilkan kadar tanin terkondensasi tertinggi untuk ekstrak teh hijau setelah simulasi pH sistem pencernaan. Berdasarkan analisis statistik (Lampiran 20), faktor suhu, waktu, dan interaksi antara suhu dan waktu berpengaruh pada kadar tanin terkondensasi pada ekstrak teh hijau setelah simulasi sistem pencernaan (p < 0.050). Dari uji lanjut Duncan, terlihat bahwa kadar tanin terkondensasi terendah ditunjukkan oleh ekstrak teh hijau dengan suhu penyeduhan 70˚C dan kadar tanin terkondensasi tertinggi ditunjukkan oleh ekstrak teh hijau dengan suhu penyeduhan 100˚C. Untuk fakor waktu, dapat terlihat bahwa kondisi penyeduhan selama 10 menit memberikan perbedaan yang signifikan. Dari hasil statistik tersebut dapat dilihat bahwa faktor waktu, suhu, dan interaksi antara suhu dan waktu jelas berpengaruh nyata pada kadar tanin terkondensasi baik pada ekstrak awal teh hijau maupun pada ekstrak teh hijau hasil simulasi sistem pencernaan. Dari Gambar 5 dapat terlihat bahwa tanin terkondensasi pada ekstrak teh hijau dengan kondisi penyeduhan suhu 70˚C selama 10 menit meningkat kadarnya hingga ekstrak teh hijau penyeduhan suhu 100˚C selama 10 menit. Kondisi demikian terjadi pada ekstrak teh hijau sebelum maupun sesudah simulasi sistem pencernaan. Xu et al., (2006) menyatakan dengan semakin meningkatknya suhu ekstraksi maka jumlah komponen fenolik dalam bentuk glikosida akan semakin menurun. Sebagian besar komponen fenol yang terekstrak pada kondisi ekstraksi 100˚C diduga adalah tanin. Ekstraksi pada suhu 100˚C dapat menyebabkan gula dan beberapa komponen organik pada tanaman pecah dan menghasilkan ekstrak dengan warna yang gelap. Tanin adalah golongan polifenol yang tahan terhadap pemanasan (Pansera et al., 2004; Winarno, 1997).

20

Tanin terkondensasi (g/100 g)

Pada pemanasan dengan suhu yang semakin tinggi akan diperoleh kadar tanin dalam jumlah besar tetapi kualitas tanin yang dihasilkan kurang baik karena komponen non-tanin yang terlarut juga semakin besar. Sedangkan penyeduhan dengan suhu yang terlalu rendah dan waktu pemanasan yang terlalu singkat kurang efisien karena kelarutan tanin belum mencapai titik optimal. Hal ini bisa menjadi alasan mengapa pada perlakuan suhu 70˚C selama 10 menit dan 100˚C selama 15 menit kadar tanin terkondensasi nya rendah. Diduga pada perlakuan penyeduhan suhu 100˚C selama 15 menit, senyawa tanin mulai terjadi kerusakan. Kadar tanin terkondensasi sebelum dan setelah simulasi pH pencernaan dapat dilihat pada Tabel 7. F

F

0.60 0.50

C

0.40

cd

A a

B b

D

C c

d

D e

f

g E

f

0.30 0.20 0.10 0.00 70˚C 5 70˚C 10 70˚C 15 85˚C 5 85˚C 10 85˚C 15 100˚C 5 100˚C 10 100˚C 15 menit menit menit menit menit menit menit menit menit perlakuan penyeduhan ekstrak awal simulasi

ekstrak simulasi

Keterangan: Huruf yang berbeda menunjukkan kadar tanin terkondensasi yang berbeda nyata (p < 0.05) dengan uji Duncan

Gambar 5. Tanin terkondensasi pada ekstrak teh hijau sebelum dan setelah simulasi sistem pencernaan

Tabel 7. Data kadar tanin terkondensasi ekstrak teh hijau Perlakuan penyeduhan

Tanin terkondensasi ekstrak awal (g/100g)

Tanin terkondensasi ekstrak simulasi (g/100 g)

Penurunan (%)

70˚C 5'

0.41

0.40

2.44

70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10'

0.35 0.38 0.40 0.44

0.34 0.37 0.39 0.42

2.86 2.63 2.50 4.54

85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15'

0.45 0.58 0.6 0.51

0.45 0.5 0.59 0.49

0.00 13.79 1.67 3.92

21

E. INHIBISI ENZIM LIPASE Pengujian ini dilakukan untuk mengetahui aktivitas penghambatan enzim lipase yang berasal dari pankreas babi tipe II (Sigma L3126). Uji inhibisi enzim lipase secara in vitro dilakukan dengan menggunakan model penghambatan pemecahan substrat p-nitrofenil-laurat (tidak berwarna) menjadi p-nitrofenil (berwarna kuning) dan asam laurat oleh enzim lipase. Proses pemecahan substrat p-nitrofenil laurat dapat dilihat pada Gambar 6.

Gambar 6. Reaksi hidrolisis pNp Laurat Nilai inhibisi ekstrak awal digunakan sebagai pembanding bagi ekstrak simulasi pH pencernaan, sehingga dapat diketahui apakah proses pencernaan memiliki pengaruh terhadap kemampuan teh hijau dalam menghambat enzim lipase. Kemampuan inhibisi ekstrak awal teh hijau terhadap lipase adalah berkisar antara 69.23% hingga 93.47%. Hasil uji inhibisi enzim lipase terhadap ekstrak awal teh hijau adalah 74.28 % (70˚C 5’), 69.23 % (70˚C 10’), 73.69 % (70˚C 15’), 72.06 % (85˚C 5’), 72.74 % (85˚C 10’), 79.80 % (85˚C 15’), 88.42 % (100˚C 5’), 93.47 % (100˚C 10’), dan 89.17 % (100˚C 15’). Berdasarkan analisis statistik, (Lampiran 23), faktor suhu merupakan faktor yang mempengaruhi nilai inhibisi lipase pada ekstrak awal teh hijau (p < 0.05) dan kemudian dilanjutkan dengan uji Duncan. Sementara untuk faktor waktu dan interaksi antara suhu dan waktu tidak berpengaruh terhadap nilai inhibisi lipase pada ekstrak awal teh hijau. Dari uji Duncan terlihat bahwa teh hijau dengan suhu penyeduhan 100˚C memberikan perbedaan yang signifikan diantara ketiga perlakuan suhu. Pada Lampiran 27, dapat dilihat faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH awal. Faktor perlakuan berpengaruh nyata terhadap inhibisi lipase pada pH awal (p < 0.05). Pada uji lanjut Duncan, terlihat bahwa Orlistat memiliki daya inhibisi yang hampir sama dengan perlakuan sampel dengan suhu 70˚C dan 85˚C di semua waktu. Daya inhibisi tertinggi pada ekstrak awal teh hijau ditunjukkan oleh ekstrak teh hijau dengan perlakuan penyeduhan suhu awal 85˚C selama 15 menit, dan suhu awal penyeduhan 100˚C di semua waktu. Kemampuan inhibisi ekstrak teh hijau setelah melalui simulasi pH pencernaan adalah berkisar antara 44.29% sampai 91.48%. Nilai inhibisi lipase terhadap ekstrak teh hijau setelah simulasi sistem pencernaan adalah 55.69 % (70˚C 5’), 44.29 % (70˚C 10’), 68.67 % (70˚C 15’), 70.23 % (85˚C 5’), 71.97 % (85˚C 10’), 73.65 % (85˚C 15’), 87.43 % (100˚C 5’), 91.48 % (100˚C 10’), 69.86 % (100˚C 15’). Berdasarkan analisis statistik, faktor suhu dan interaksi antara suhu dan waktu merupakan faktor yang mempengaruhi nilai inhibisi lipase pada ekstrak teh hijau setelah simulasi sistem pencernaan (p < 0.05) dan kemudian dilanjutkan dengan uji Duncan. Dari uji Duncan terlihat bahwa terdapat perbedaan yang signifikan antara ketiga perlakuan suhu. Teh hijau dengan suhu penyeduhan 70˚C memiliki nilai inhibisi lipase ekstrak awal yang paling rendah sedangkan teh hijau dengan suhu penyeduhan 100˚C memiliki nilai inhibisi lipase yang paling besar. Pada Lampiran 29 dapat dilihat faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH setelah simulasi pencernaan. Faktor perlakuan berpengaruh nyata terhadap inhibisi lipase (p < 0.05). Pada uji lanjut Duncan, terlihat bahwa Orlistat memiliki daya inhibisi

22

Inhibisi lipase (%)

setelah simulasi pencernaan yang nilainya tidak berbeda dengan sampel dengan perlakuan penyeduhan suhu 70˚C selama 5 menit. Perlakuan penyeduhan sampel ekstrak teh hijau dengan suhu awal penyeduhan 100˚C selama 10 menit memiliki nilai daya inhibisi setelah simulasi pencernaan yang hampir sama dengan perlakuan penyeduhan 100˚C selama 5 menit. Kedua perlakuan penyeduhan ekstrak teh hijau tersebut menghasilkan daya inhibisi tertinggi setelah simulasi pencernaan. Dari Gambar 7 terlihat bahwa daya inhibisi lipase pada perlakuan penyeduhan 70˚C selama 10 menit sampai perlakuan suhu penyeduhan 100˚C selama 10 menit terus meningkat. Hal itu terjadi karena komponen bioaktif yang diduga dapat menghambat aktivitas enzim lipase belum banyak terekstrak dan pada perlakuan penyeduhan suhu 100˚C selama 15 menit, komponen bioaktif tersebut diduga teroksidasi oleh panas dan menurunkan aktivitas inhibisi lipase. Selain itu kemungkinan pada perlakuan penyeduhan pada suhu dan waktu tertentu juga terdapat senyawa jenis lain yang ikut terekstrak yang memliki aktivitas inhibisi lipase karena masing-masing senyawa bioaktif yang berbeda akan terekstrak pada waktu dan suhu yang berbeda pula. Data persen penurunan inhibisi lipase antara ekstrak teh hijau sebelum dan setelah simulasi pH sistem pencernaan dapat dilihat pada Tabel 8. Pada pH asam, kondisi lingkungan akan dipenuhi ion-ion H+. Diduga perubahan sifat asam amino-asam amino penyusun enzim akan memengaruhi struktur tiga dimensi enzim sehingga enzim tidak dapat bekerja secara optimum. Oleh karena itu, terdapat penurunan yang cukup signifikan pada sebagian besar perlakuan ekstrak teh hijau antara sebelum dan setelah simulasi pH sistem pencernaan. Hart et al., (2003) menyatakan asam amino bersifat amfoterik artinya dapat berperilaku sebagai asam dan basa. Muchtadi et al., (2006) menyatakan perubahan keaktifan enzim oleh perubahan pH lingkungan disebabkan oleh terjadinya perubahan ionisasi pada gugus ionik enzim, pada sisi aktifnya atau sisi lain yang secara tidak langsung memengaruhi sisi aktif. 100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00

BC e AB

AB

A

cd

A cd

A

cd

ABC

d

C e

BC cd

A

b

bc

a

70C 5 70C 10 70C 15 85C 5 85C 10 85C 15 100C 5 100C 10 100C 15 orlistat menit menit menit menit menit menit menit menit menit Penyeduhan ekstrak awal

ekstrak simulasi

Keterangan: Huruf yang berbeda menunjukkan inhibisi yang berbeda nyata (p< 0.05) dengan uji lanjut Duncan

Gambar 7. Nilai inhibisi enzim lipase dari ekstrak teh hijau sebelum dan setelah simulasi sistem pencernaan Orlistat pada penelitian ini digunakan sebagai kontrol positif dalam inhibisi lipase. Orlistat merupakan zat aktif yang pertama kali ditemukan dapat berfungi sebagai inhibitor lipase dan

23

memiliki efek yang sangat tinggi. Orlistat dihasilkan oleh bakteri Streptomyces toxitricini (Hadvary et al., 1988). Orlistat bekerja spesifik dengan mekanisme penghambatan non kompetitif pada lumen lambung dan usus halus dengan membentuk suatu ikatan kovalen pada serine yang aktif dari lipase pankreas dan lambung sehingga merubah kerja enzim menjadi non aktif (Cariere et al., 2001). Enzim yang dinonaktifkan tersebut tidak dapat menghidrolisis trigliserida makanan menjadi asam lemak bebas dan monogliserol yang dapat diserap. Orlistat memiliki daya inhibisi lipase sebesar 71.65% sebelum simulasi sistem pencernaan dan 62.01% setelah simulasi sistem pencernaan. Jika dibandingkan dengan Orlistat, semua perlakuan ekstrak teh hijau memiliki daya inhibisi lebih tinggi dibandingkan dengan Orlistat kecuali pada perlakuan penyeduhan dengan suhu 70˚C selama 10 menit. Hal ini bisa terjadi karena kelarutan Orlistat lebih rendah dibandingkan teh hijau. Menurut Iswantini et al., (2011), Xenical (Orlistat) dapat menginhibisi lipase pankreas 10.6% pada konsentrasi 100 ppm. Tabel 8. Data inhibisi lipase ekstrak teh hijau Perlakuan penyeduhan

Daya Inhibisi lipase ekstrak awal (%)

Daya inhibisi lipase ekstrak simulasi (%)

penurunan (%)

70˚C 5' 70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10' 85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15' Orlistat

74.28 69.23 73.69 72.06 72.74 79.8 88.42 93.47 89.17 71.65

55.69 44.29 68.67 70.23 71.97 73.65 87.43 91.48 69.86 62.01

18.59 24.94 5.02 1.83 0.77 6.15 0.99 1.99 19.31 9.64

Dalam hal kemampuan menghambat lipase, teh hijau terbukti lebih baik dibandingkan teh hitam. Penelitian yang dilakukan Bijaksana (2012) menunjukkan bahwa inhibisi lipase dari teh hitam memiliki nilai dibawah kemampuan Orlistat. Pada teh hitam kemampuan inhibisi terbaik adalah pada penyeduhan suhu 70oC selama 5 menit dan 10 menit, atau 100o C selama 15 menit. Studi terbaru yang dilakukan terhadap potensi teh adalah peranannya membantu menurunkan berat badan seperti dilaporkan dalam American Journal of Clinical Nutrition, 1999 . Penelitian tersebut dilakukan oleh Institute of Physiology , University of Fribourg , Switzerland , yang melibatkan 10 orang sebagai sampel. Para peneliti melakukan pengukuran 24 jam energi expenditure pada subjek yang diberi kafein (50 mg), ekstrak teh hijau (50 mg kafein dan 90 mg EGCG), serta placebo. Hasil yang diperoleh menunjukkan bahwa pemberian ekstrak teh hijau secara bermakna meningkatkan 4% energi expenditure bila dibandingkan placebo. Dari penelitian tersebut, teh hijau diketahui mempunyai potensi sebagai thermogenesis sehingga mampu meningkatkan pembakaran kalori dan lemak yang berimplikasi terhadap penurunan berat badan. Hasil studi ini menjanjikan potensi penggunaan ekstrak teh hijau dalam program penurunan berat badan, di samping melakukan pembatasan konsumsi kalori (Pambudi, 2006). Uji T-Test dapat dilihat pada Lampiran 31-39. Uji ini bertujuan untuk mengetahui perbedaan nilai antara kadar total fenol, tanin terkondensasi, dan nilai inhibisi pada ekstrak awal teh hijau sebelum dan sesudah simulasi sistem pencernaan. Berdasarkan Uji T, kadar total fenol yang memiliki perbedaan nyata pada p < 0.05 antara ekstrak teh hijau sebelum dan sesudah sistem

24

pencernaan adalah pada perlakuan penyeduhan suhu 70˚C selama 15 menit, suhu 85˚C selama 10 menit, dan suhu 100˚C di ketiga waktu. Hal ini berarti bahwa secara garis besar pH berpengaruh pada kadar total fenol di dalam teh. Pengujian pada kadar tanin terkondensasi memberikan hasil adanya perbedaan nyata ( p < 0.05) pada kadar tanin terkondensasi antara ekstrak awal teh hijau dan ekstrak teh hijau setelah simulasi sistem pencernaan dengan perlakuan penyeduhan suhu 70˚C selama 15 menit dan suhu 100˚C selama 5 menit. Hagerman et al 1998 menyatakan bahwa jika terbentuk ikatan hidrogen antar tanin dengan protein, terutama pada pH mendekati isoelektrik (4-5) kemungkinan yang terjadi adalah protein menjadi terendapkan. Fenomena ini dikenal dengan denaturasi protein. Apabila protein enzim terdenaturasi, maka enzim akan menjadi inaktif. (Insel et al., 2011). Dilihat dari hasil T-Test pada keseluruhan perlakuan, didapatkan bahwa perlakuan penyeduhan dengan suhu 70˚C selama 10 menit dan suhu 100˚C selama 15 menit memberikan perbedaan yang nyata. Hal ini berarti pH pencernaan dapat memberikan pengaruh yang signifikan pada ekstrak teh yang diberi perlakuan simulasi sistem pencernaan. Komponen bioaktif yang diduga dapat menghambat kerja dari enzim adalah komponen fenolik yang tahan terhadap panas dan tidak tahan terhadap perubahan pH sistem pencernaan manusia. Hal tersebut dapat dilihat dari kemampuan komponen yang masih bisa terekstrak dengan baik di suhu 100˚C dan memberikan nilai inhibisi lebih besar dibandingkan Orlistat. Sementara itu, tanin merupakan senyawa fenol yang tahan pada suhu tinggi 3. Hubungan Inhibisi Enzim Lipase dan Total Fenol Korelasi yang bernilai antara 0.41 hingga 0.70 (p<0.05) memiliki keeratan kuat dan 0.71 hingga 0.90 (p<0.05) memiliki keeratan sangat kuat (Nugroho, 2005). Dari Uji Korelasi (Lampiran 40) pada p < 0.01, diketahui bahwa kadar total fenol pada ekstrak awal teh hijau memberikan pengaruh nyata pada nilai inhibisinya. Dengan uji lanjut Pearson, nilai 0.510 menunjukkan korelasi yang kuat antara keduanya. Dengan menggunakan p < 0.01 juga, didapatkan kadar total fenol pada ekstrak teh hijau setelah simulasi sistem pencernaan memberikan pengaruh nyata pada nilai inhibisi lipase. Uji lanjut Pearson menunjukkan nilai 0.731 yang artinya pada taraf kepercayaan 99%, korelasi antara total fenol dan nilai inhibisinya sangat kuat. 90.00 Inhibisi lipase (%)

85.00

R² = 0.510 ( p < 0.01)

80.00 75.00 70.00

R² = 0.731 (p < 0.01)

65.00 60.00 55.00 50.00 25.00

30.00

35.00

40.00

45.00

50.00

Total Fenol (mg GAE/g BK) Linear (ekstrak awal)

Linear (ekstrak simulasi)

Gambar 8. Grafik Korelasi Inhibisi Enzim Lipase dan Total Fenol

25

Inhibisi lipase (%)

4. Hubungan Inhibisi Enzim Lipase dan Kadar Tanin Terkondensasi Dari Uji Korelasi (Lampiran 42) pada p < 0.01, diketahui kadar tanin terkondensasi pada ekstrak awal teh hijau memberikan pengaruh nyata pada nilai inhibisinya. Dengan uji lanjut Pearson, nilai 0.622 menunjukkan korelasi yang kuat antara keduanya. Dengan menggunakan p < 0.01 juga, didapatkan kadar tanin terkondensasi pada ekstrak teh hijau setelah simulasi sistem pencernaan memberikan pengaruh nyata pada nilai inhibisi lipase. Uji lanjut Pearson menunjukkan nilai 0.725 yang artinya pada taraf kepercayaan 99%, korelasi antara kadar tanin terkondensasi dan nilai inhibisinya sangat kuat. 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00

R² = 0.622 ( p < 0.01) R² = 0.725 ( p < 0.01)

0.20

0.30

0.40

0.50

0.60

0.70

Tanin terkondensasi (g LE/100 g BK) Linear (ekstrak awal)

Linear (ekstrak simulasi)

Gambar 9. Grafik Korelasi Inhibisi Lipase dan Tanin Terkondensasi Dari hasil uji korelasi yang didapat, besar dugaan senyawa yang dapat menghambat aktivitas enzim lipase pada ekstrak teh hijau adalah komponen polifenol golongan flavanol yang didominasi oleh EC, ECG, dan EGCG. Ketiga senyawa tersebut merupakan senyawa polifenol yang tidak tahan panas. Sementara itu, dilihat dari hasil penyeduhan suhu 100˚C, tanin juga diduga kuat berperan dalam aktivitas penghambatan enzim lipase pada ekstrak teh hijau. Tanin adalah golongan polifenol yang tahan terhadap pemanasan (Pansera et al., 2004; Winarno, 1997).

26

V. SIMPULAN DAN SARAN

A. SIMPULAN Penelitian ini menunjukkan bahwa kombinasi suhu dan waktu dari perlakuan penyeduhan teh hijau dapat memengaruhi besarnya nilai inhibisi enzim lipase baik pada pH awal maupun pH setelah simulasi sistem pencernaan. Nilai pH ekstrak teh awal tidak dipengaruhi oleh suhu, waktu, maupun interaksi antara keduanya. Kadar total fenol dipengaruhi oleh faktor suhu awal penyeduhan ekstrak teh hijau. Pada kadar tanin terkondensasi, faktor yang memengaruhi adalah suhu awal, waktu, dan interaksi antara suhu dan waktu penyeduhan ektrak teh hijau. Sedangkan daya inhibisi teh hijau terhadap aktivitas enzim lipase hanya dipengaruhi oleh faktor suhu awal penyeduhan. Daya inhibisi enzim lipase ini memiliki nilai korelasi yang sangat baik dengan total fenol dan kadar tanin terkondensasi dari ekstrak teh hijau. Hal itu menunjukkan bahwa tanin dapat dianggap komponen fenol yang menghambat aktivitas enzim lipase. Perlakuan penyeduhan ekstrak awal teh hijau pada suhu 85˚C selama 5 menit dan suhu 100˚C pada ketiga waktu menunjukkan daya inhibisi yang paling tinggi. Akan tetapi, dilihat dari ekstrak teh hijau setelah simulasi pencernaan, hanya perlakuan penyeduhan 100˚C selama 5 menit dan 10 menit yang menunjukkan daya inhibisi lipase terbaik. Oleh karena itu, perlakuan penyeduhan ekstrak teh hijau pada suhu 100˚C selama 5 menit dan suhu 100˚C selama 10 menit merupakan variasi perlakuan penyeduhan yang dapat dijadikan sebagai rekomendasi untuk menghambat penyerapan lipid.

B. SARAN Diperlukan beberapa penelitian lebih lanjut dalam penelitian ini. Diantaranya adalah identifikasi komponen yang terekstrak pada berbagai kondisi penyeduhan dan perubahannya selama pencernaan. Selain itu diperlukan identifikasi komponen anti lipase pada kondisi penyeduhan terpilih yang dihasilkan oleh penelitian ini. Pada penelitian ini, kemampuan inhibisi lipase menggunakan substrak sintetik (pNP-laurat) sebagi substratnya, untuk penelitian selanjutnya dapat dilakukan pengujian menggunakan sistem lipid yang lain atau lipid teremulsi. Pengaruh gula dan sterilisasi terhadap aktivitas antilipase pada ekstrak teh hijau juga dapat dilakukan pada penelitian lebih lanjut.

27

DAFTAR PUSTAKA Adisewojo. 1982. Bercocok Tanam Daun Teh. Aditya Media, Yogyakarta. Afriansyah N. 2006. Teh hitam untuk jantung, teh hijau sehatkan otak. http://www.kpbptpn.co.id/news-220-0-teh-hitam-untuk-jantung-teh-hijau-sehatkanotak.html [12 Juni 2012]. Ali H. 2002. Protein-phenolic interaction in food [thesis]. Departement of Food Science and Agricultural Chemistry, McGill University Quebec. Almatsier S. 2001. Prinsip Dasar Ilmu Gizi. Gramedia Pustaka Utama, Jakarta. Anggraeni S. 2011. Pengaruh Suhu dan Lama Penyeduhan Teh Hitam (Camellia sinensis) serta Proses Pencernaan secara In vitro terhadap Penghambatan Aktivitas Enzim Alfa Amilase dan Alfa Glukosidase secara In vitro. [Skripsi]. Bogor: Institut Pertanian Bogor Anonim. 2012. http://aguskrisnoblog.wordpress.com/page/10/REKAYASA GENETIKA MIKROORGANISME PENGHASIL ENZIM LIPASE UNTUK PRODUK BAKERY [12 Juni 2012]. Aryani. 2011. Penting diketahui! kebiasaan umum yang salah dalam mengonsumsi minuman atau makanan. http://www.kesehatan.kompasiana.com. [12 Juni 2012] Astawan M. 2008. Khasiat Warna-Warni Makanan. PT Gramedia Pustaka Utama, Jakarta. Astill C, Birch MR, Dacombe C, Philip G. Humphrey, and Martin PT. 2001. Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J. Agric. Food Chem. Vol. 49: 5340-5347. Bhatia I S. 1957. Tea catechin. Tea research association assam. India. Berdanier CD, Dwyer J, Feldman EB. 2006. Handbook of Nutrition and Food Second Edition. USA: CRC Press. Birari R and Bhutani K. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Vol. 12: 879-889. Bisswanger H. 2008. Enzyme Kinetics. Principles and Methods. 2nd ed. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim. Bitou N, Ninomiya M, Tsujita T, Okuda H. 1999. Screening of lipase inhibitors from marine algae. Journal of Lipids. Vol. 34: 441-445. Bhutani KK and Gohil VM. 2010. Natural products drug discovery research in india: status and appraisal. Indian Journal of Experimental Biology. Vol. 48: 199-207. Cadensas, E. dan L. Parker. 2002. Handbook of Antioxidants (2 Ed.). Marcell Dekker, Inc., New York, USA. Cariere F et al. 2001. Inhibition of gastro-intestinal lipolysis by Orlistat TM during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 281(1): G16-G28. Chen Z Y, Zhu QY, Tsang D, Huang, Y. 2001. Degradation of Green Tea Catechins in Tea Drinks. Journal of Agriculture and Food Chemistry 49: 477-482. [ Depkes ] Departemen Kesehatan RI. 2009. Penderita Obesitas di Tahun 2015. Berita Dep.Kes.RI. [29 Mei 2012]. Escribano MT, Santos C. 2002. Polyphenol extraction from foods. Di dalam: Esribano MT, Santos C (eds.). Methods in Polyphenol Analysis. USA: CRC Press. Garza AL, Milargo FI, Boque N, Campin J, Martinez JA. 2011. Natural inhibitor of pancreatic lipase as new players in obesity treatment. Departement of Nutrition and Food Science, Physiology and Toxicology, University of Navara, Pamplona, Spain. Gondoin A, Grussu D, Stewart D, McDougall GJ. (2010). White and green tea polyphenols inhibit pancreatic lipase in vitro. Journal of Food Research International 43 : 1537-1544. Gurr MI. 1992. Role of Fats in Food And Nutrition 2nd edition. USA. Elsevier Science Publishing. Hadvary P, Lengsfeld H, Wolfer H. 1988. ”Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydroplastin”. J Biochem, 256: 357-361. Hagerman AE, Butler LG. 1998. Protein precipitation method for the quantitive determination of tannin. J Agric Food Chem 26: 809-812. Hagerman AE. 2002. Tannin Chemistry. USA: Department of Chemistry and Biochemistry Miami University, Oxford.

28

Han LK et al. 2005. “Antiobesity action of Zingiber officinale Roscoe”. [abstrak]. Yakugaku Zasshi 125(2): 213-217. Han LK et al. 2006. “Reduction of fat storage in mice fed a high-fat diet long term by treatment with saponins prepared from Kochia scoparia fruit”. [artikel]. Phytoteraphy Research. 20 (10): 877-882. Hart et al. 2003. Kimia Organik: suatu kuliah singkat. Erlangga, Jakarta. Hartoyo A. 2003. Teh dan Khasiatnya bagi Kesehatan. Kanisius, Yogyakarta. Haslam E, Williamson MP, Baxter NJ, Charlton AJ. 1999. Astringency and polyphenol protein interaction. Recent Advance in Phytochemistry 33: 289. Hedqvist, H. 2004. Metabolism of soluble proteins by rumen microorganisms and the influence of condensed tannins on nitrogen solubility and degradation. Thesis. Swedish University of Agricultural Sciences, Uppsala. Huxley R, Omari A, Caterson D. 2008. The Epidemiology of Diabetes Mellitus. John Wiley & Sons Ltd, Australia. [IPGRI] International Plant Genetic Resources Institute. 1997. Descriptors For Tea. 1997. IPGRI, Italy. Insel P, Ross D, McMahon K, Bernstein M. 2011. Nutrition. Jones and Bartlett Publishers, Canada. International Diabetes Federation: Diabetes Atlas 2005. International Diabetes Federation, Brussels. Iswantini D, Darusman LK, Gunawan E, Nurulita Y. 2003. “Identifikasi senyawa bioaktif daun jati belanda (Guazuma ulmifolia Lamk.) sebagai pelangsing dengan menggunakan metode enzimatis”. Gakuryoku 9(2):138-142. Iswantini D, Silitonga RF, Martatilofa E, Darusman LK. 2011. Zingiber cassumunar, Guazuma ulmifolia, and Murraya paniculata Extracts as Antiobesity: In Vitro Inhibitory Effect on Pancreatic Lipase Activity Vol 18, No 1, 2011. Institut Pertanian Bogor. Jang D, Lee G, Kim J, Lee Y, Kim J, Kim Y. 2008. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm Res. Vol. 31: 666-670. Julian AR. 2011. Pengaruh Suhu dan Lamanya Waktu Penyeduhan Teh Hijau (Camellia sinensis) serta Proses Pencernaan secara In vitro terhadap Penghambatan Aktivitas Enzim Alfa Amilase dan Alfa Glukosidase secara In vitro. [Skripsi]. Bogor: Institut Pertanian Bogor. Kanarek RB, Kaufan RM. 1991. Nutrition and Behavior New Perspectives. Van Nostrand Reinhold, USA. Kirana C, P PF Rogers, LE Bennet, MY Abeywardena, GG Patten. 2005. Naturally Derived Micelles for Rapid in vitro Screening of Potential Cholesterol-Lowering Bioactives. Journal of Agricultural Food Chemistry. 53:4623-4627 Krempf M, Louvet JP, Allanic H, Attali JR. 2001. Orlistat associated with a hypocaloric diet if obese patients promotes and maintains weight loss during an 18 month period. Poster submitted in ADA. Di dalam: Roche. Lembar Informasi Orlistat. Xenical ®. Kumar A. 2003. Animal Physiology. Discovery Publishing House, India. Kuo TM, Gardener HN. 2002. Lipid Biotechnology. Marcel Dekker Inc, New York. Kusumaningrum D. 2008. Pemetaan Karakteristik Komponen Polifenol untuk Mencegah Kerusakannya pada Minuman Teh Ready to Drink (RTD) [Skripsi]. Bogor: Institut Pertanian Bogor Lakka HM dan Bouchard C. 2007. Surgical Management of Obesity. Saunder Elsevier Inc, Philadelphia. Laresolo B. 2008. Bagaimana cara menyeduh teh yang benar. www.kedaitehlaresolo.com [29 Mei 2012] Lehninger, A. L. 1982. Dasar-dasar Biokimia. Jilid I. (Terjemahan Maggy Thenawidjaja.) Erlangga, Jakarta. Lehninger AL. 1993. Dasar-Dasar Biokimia (terjemahan M. Thenawidjaja). Erlangga, Jakarta. Lelani YR. 1995. Optimasi Kondisi Ekstrak Teh Wangi pada Industri Teh Botol. [Skripsi]. Bogor: Institut Pertanian Bogor Martatilofa E. 2008. Daya inhibisi ekstrak bangle, jati belanda,. kemuning, dan formula biolangsing terhadap lipase pankreas. [skripsi]. Institut Pertanian Bogor, Bogor. Martoharsono S. 1978. BIOKIMIA. Gadjah Mada University Press, Jogjakarta.

29

Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M. 2010. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr. Vol. 49: 243-249 McDougall GJ, Kulkarni NN, Stewart D. (2009). Berry Polyphenol Inhibit Pancreatis Lipase Activity In Vitro. Journal of Food Chemistry 155 : 193-199. McDougall, Gordon J. , Anais Gondoin, Dominic Grussu, Derek Stewart. 2010. White and green tea polyphenols inhibit pancreatic lipase in vitro. J. A. Gondoin et al. / Food Research International 43 (2010) 1537–1544 Michelle A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD. (3 April 1993). Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. Miean, K.H. dan S. Mohamed. 2001. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry 49 : 3106-3112. Miller D, Benito P. 1998. Iron absorption and bioavailability: an update review. Nutrition Research, [Online]. 18 (3). Abstract from Science Direct. http://www.sciencedirect.com, Science Direct. [4 Juni 2012] Millic B, Stojanovic S, Vucureuic N, Turcic M. 1968. Chlorogenic and quinic acids in sunflower meal. J Sci Food Agric 19: 108. Muchidin, Apandi. 1994. Teknologi Teh. Universitas Bandung Raya. Bandung. Hal 1-11, 55-56. Muchtadi D, Palupi NS, Astawan M. 2006. Metabolisme Zat Gizi: Sumber, Fungsi, dan Kebutuhan bagi Tubuh Manusia. Jakarta: Pustaka Sinar Harapan. Nasution MZ, Tjiptadi W. 1975. Pengolahan Teh. Departemen Teknologi Hasil Pertanian. FATEMETA IPB, Bogor. Nielsen SS. 2010. Food Analysis. Springer, London. Pambudi, J. 2006. Potensi teh sebagai Sumber zat gizi dan perannya dalam kesehatan. Pusat Penelitian dan Pengembangan Gizi. www.pdgionline.com [4 Juni 2012] Pansera MR, Iob GA, Atti-Santos AC, Rosatto, Atti-Serafini L, Cassel E. 2004. Extraction of Tannin by Acacia mearnsii with Supercritical Fluids. Brazilian Archives of Biology and Technology an International Journal. Poedjiadi A. 1994. Dasar-Dasar Biokimia. UI Press, Jakarta. Porter LJ, Hrstich LN, Chan BG. 1986. The convertion of procyanidins and prodhelphinidins to cyanidin and delphinidin. Phytochemistry. Vol. 25:223-230. PubChem. 2005. Orlistat. http://pubchem.ncbi.nlm.nih.gov [7 Juni 2012] Rahardjo SS, Ngatijan, Pramono S. 2005. Influence of ethanol extract of jati belanda leaves (Guazuma ulmifolia Lamk.) on lipase enzyme activity of Rattus novergicus serum. Inovasi 4:48-53. Rangari, V. D. 2007. Pharmacognosy: Tannin Containing Drugs. Nagpur: J. L. Chaturvedi College of Pharmacy. Rissanen A, Sjostrom l, Noack T, et al. 1999 . Early weight loss with orlistat as a predictor of longterm success in obesity treatment. Int.J.Obes. Vol. 23 Suppl5: A577. Di dalam: Roche. Lembar Informasi Orlistat. Xenical ®. Rohdiana, D. 2006. Menyeduh teh dengan ‘bbm’. Lab pengolahan bahan pangan, jur tekpang ft unpas. www.anekaplanta.wordpress.com/2007/12/26/menyeduh-teh-dengan-bbm [12 Juni 2012] Salleh AB, Rahman RA, Basri M. 2006. New Lipases and Proteases. Nova Science Publishing Inc, New York. Seeram, N.P. dan M.G. Nair. 2002. Inhibition of Lipid Peroxidation and Structure – Activity-Related Studies of The Dietary Constituents Anthocyanins, Anthocyanidins, and Catechins. Journal of Agriculture and Food Chemistry 50 : 5308-5312. Setyamidjaja D. 2000. Teh Budidaya Dan Pengolahan Pascapanen. Kanisius, Yogyakarta. Shahidi F, Lin JK, dan CT Ho. 2009. Tea and Tea Products. CRC Press: London. Shahidi F dan M Naczk. 2008. Food Phenolics. Technomic pub. Co. inc. lancaster-bacel Shahidi, F. dan M Naczk. 1995. Food Phenolics, Sources Chemistry Effects Applications Technomic Publ., Lancaster. Basel. Shimada T et al. 2009. Preventive Effect of pine Bark Extract (Flavangenol) on Metabolic Disease in Western Diet-Loaded Tsumura Suzuki Obese Diabetes Mice. Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine.

30

Shin JE, Han MJ, Kim DH. 2003a. 3-methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. J Biol Pharm 26(6):854-857. Siebert K.J. 1999. Reviews- Effect of protein-polyphenol interaction on beverage haze, stabilization and Analysis. J Agric Food Chem 47 (2) : 353. Silitonga RF. 2008. Daya inhibisi ekstrak daun jati belanda dan bangle terhadap aktivitas lipase pankreas sebagai antiobesitas [skripsi]. Bogor: Jurusan Kimia. FMIPA, IPB. Siregar CT. 2004. Kebutuhan dasar manusia eliminasi buang air besar [makalah]. Sumatera Utara:Program Studi Keperawatan, Fakultas Kedokteran, Universitas Sumatera Utara. Sjostrom L, Risannen A, Andersen T, et al. 1998. Randomised Placebo-Controlled Trial of Orlistat for Weight Loss and Prevention of Weight Regain in Obese Patient. Lancet. Vol. 352:16772. Somantri R. 2011. Kisah & Khasiat Teh. PT Gramedia Pustaka Utama, Jakarta. Spillane JJ. 1992. Komoditi Teh Peranannya Dalam Perekonomian Indonesia. Kanisius, Yogyakarta. Stanner S. 2005. Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors. Blackwell Publishing Ltd, UK. Strycharz S, Shetty K. 2002. Effect of Agrobacterium rhizogenes on phenolic content of Menthapulegium elite clonal line phytoremediation applications. Process Biochemistry (38): 287-293. Sulistyo J,Nurdiana, H Elizar. 2003. Pengembangan Kerja Sama Riset, Teknologi Produksi, dan Pemasaran Produk Hilir Teh. Prosiding ”Simposium Teh Nasional 2003”. Bandung : Pusat Penelitian Teh Kina Gambung Suryaningrum RD, Sulthon M, Prafiadi S, Maghfiroh K. 2007. Peningkatan kadar tanin dan kadar klorin sebagai upaya peningkatan nilai guna teh celup. Universitas Muhammadiyah Malang, Malang. Suryatmo, F.A. 2003. Diversifikasi Produk Hilir Teh Untuk Pengembangan Pasar Teh Indonesia. Gambung: Balai Penelitian Teh dan Kina, Badan Penelitian Dan Pengembangan Pertanian Departemen Pertanian . Tanaka T, Matsuo Y, Kouno I. 2009. Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods. Int J Mol Sci. Vol. 11: 14-34. Tarigan J. 2009. Ester asam lemak. PAU Universitas Sumatera Utara, Medan. The Grape Seed Method Evaluation Comittee. 2001. Grape Seed Extract White Paper. www.activin.com [1 Juni 2012] Trilaksani W. 2003. Antioksidan: jenis, sumber, mekanisme kerja dan peran terhadap kesehatan. Term paper introductory science philosophy (PPS702) graduate program / S3. Institut Pertanian Bogor, Bogor. Tucci SA, Boyland EJ, Halford JCG. 2010. Diabetes, metabolic syndrome and obesity: targets and therapy. Dove Medical Press Ltd. Vol. 3: 125-143. Tuminah S. 2004. Teh (Camellia sinensis O.K. Var Assamica (Mast)) sebagai salah satu sumber antioksidan. Cermin Dunia Kedokteran 44: 52-54. Tunggul, P.D., 2009. Teh dan Pengolahannya. http://www.Iptek.net.id. [24 Juli 2012]. Urifah I. 2011. Daya Inhibisi Ekstrak Rosella (Hibiscus sabdariffa) terhadap Aktivitas Enzim Alfa Amilase, Alfa Glukosidase, dan Lipase secara In Vitro. [Tesis]. Bogor: Institut Pertanian Bogor. Vermerris W, Nicholson R. 2008. Phenolic Compound Biochemistry.Springer, USA. Wan X, Li D, Zhang Z. 2009. Green tea and black tea. Di dalam: Ho CT, Lin JK, Shahidi F (eds.). Tea and Tea Product:Chemistry and Health-Promoting Properties. USA: CRC Press, Taylor and Francis Group, pp 1-8. [WHO] World Health Organization. 1998. Diabetes. www.who.net/en/ [1 Juli 2012] Winarno FG. 1987. Kimia Pangan dan Gizi. Jakarta. PT Gramedia Pustaka Utama. Winarno FG. 1997. Enzim Pangan. PT Gramedia Utama, Jakarta. Winarno FG. 2010. Enzim Pangan. Bogor: Pusat Antar Universitas Wirahadikusumah M a. 1977. Biokimia: protein, enzim, dan asam nukleat. Penerbit ITB, Bandung. Wirahadikusumah M b . 1977. Biokimia: metabolisme energi. Karbohidrat dan lipid. Penerbit ITB, Bandung. Wrasiati LP, Anju A, Sri M. 2009. Studi aktivitas antioksidan bubuk dan seduhan teh hijau (Camellia sinensis) yang beredar di kota Denpasar. [Prosiding] Bali: Universitas Udayana.

31

Xu Guihua, Ye Xingqian, Chen Jianchu, Liu Donghong. 2006. Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. J. Agric. Food. Chem. 55 (2):330-335. Yadi. 2009. Teh. www.yadibagayo.blogspot.com [14 Juni 2012]. Zega. 2010. Pengembangan produk jelly drink berbasis teh (Camelia sinensis) dan secang (Caesalpinia sappan L.) sebagai pangan fungsional [skripsi]. Fakultas Teknologi Pertanian IPB, Bogor.

32

Lampiran 1. Hasil uji statistik RAL dua faktor penyeduhan terhadap pH awal ekstrak teh hijau

Univariate Analysis of Variance Between-Subjects Factors Value Label

suhu

waktu

N

1

70˚C

6

2

85˚C

6

3

100˚C

6

1

5'

6

2

10'

6

3

15'

6

Tests of Between-Subjects Effects Dependent Variable: pH Source

Type III Sum of

df

Mean Square

F

Sig.

Squares Corrected Model Intercept

.169

a

8

.021

1.838

.192

588.131

1

588.131

51166.516

.000

suhu

.066

2

.033

2.889

.107

waktu

.042

2

.021

1.812

.218

suhu * waktu

.061

4

.015

1.325

.332

.011

Error

.103

9

Total

588.403

18

.272

17

Corrected Total

a. R Squared = .620 (Adjusted R Squared = .283)

33

Lampiran 2. Tabel data dan kurva standar asam galat Konsentrasi Galat (ppm)

Absorbansi

0 50 100 150 200 250

0 0.259 0.502 0.754 1.025 1.25

Kurva Standar Larutan Asam Galat 1.4 y = 0.005x + 0.003 R² = 0.999

Absorbansi

1.2 1 0.8 0.6 0.4 0.2 0 0

50

100

150

200

250

300

Konsentrasi (ppm)

34

Lampiran 3. Data total fenol (pH awal dan simulasi)

Ekstrak awal teh hijau Perlakuan

70˚C 5' 70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10' 85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15'

Ulangan 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Fenol (mg GAE/g BK) 34.34 30.40 29.11 30.07 35.34 36.64 41.37 43.68 42.47 45.28 45.72 42.71 49.49 44.01 48.81 45.53 47.99 44.21

Ulangan

Rata-rata ± SD

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

32.37 ± 2.56 29.59 ± 1.04 35.99 ± 0.82 42.53 ± 2.38 43.87 ± 1.74 44.21 ± 2.13 46.75 ± 3.23 47.17 ± 2.39 46.10 ± 2.27

Ekstrak setelah simulasi pencernaan Fenol (mg Rata-rata ± GAE/g BK) SD 28.67 28.63 ± 1.53 28.60 26.66 27.88 ± 1.71 29.10 27.69 29.80 ± 2.98 31.91 41.09 40.96 ± 0.25 40.82 38.34 40.38 ± 2.44 42.43 38.94 40.24 ± 1.78 41.54 43.96 43.03 ± 1.20 42.11 45.19 43.37 ± 3.54 41.54 42.43 41.75 ± 2.03 41.06

Contoh Perhitungan 70˚C 10 menit ulangan 1 sampel 1: Dari kurva standar asam galat y = 0.005 x + 0.003 (y= absorbansi, x = konsentrasi) 0.414 = 0.005 x + 0.003 x = 82.18 ppm atau 82.18 mg/L Konversi ke Gallat Acid Equivalent (GAE) = konsentrasi x ml larutan yang diuji x pengenceran x = 82.18 mg/l x 0.5 ml x (

.

)x(

)x(

( .

( %

)

)x(

)

)

= 28.17 mg GAE/g BK

*7.86% merupakan kadar air bubuk teh hijau

35

Lampiran 4. Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol awal ANOVA fenol_awal Sum of Squares Between Groups Within Groups Total

df

Mean Square

1390.978

8

173.872

128.849

27

4.772

1519.827

35

F 36.435

Sig. .000

36

Lampiran 5. Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol awal fenol_awal Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

3

4

70˚C 10 menit

4

29.59392

70˚C 5 menit

4

32.37060

70˚C 15 menit

4

85˚C 5 menit

4

42.52605

85˚C 10 menit

4

43.87154

43.87154

85˚C 15 menit

4

44.21434

44.21434

100˚C 15 menit

4

46.09974

100˚C 5 menit

4

46.75106

100˚C 10 menit

4

47.17099

Sig.

35.98714

.083

1.000

.312

.065

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

ALPHA(0.05)

37

Lampiran 6. Uji statistik total fenol pH awal (RAL Univariate)

Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: fenol_awal Source

Type III Sum of

df

Mean Square

F

Sig.

Squares Corrected Model

1390.978

a

8

173.872

36.435

.000

Intercept

60380.081

1

60380.081

12652.522

.000

1300.060

2

650.030

136.212

.000

Waktu

24.341

2

12.171

2.550

.097

Suhu * Waktu

66.577

4

16.644

3.488

.020

Error

128.849

27

4.772

Total

61899.908

36

1519.827

35

Suhu

Corrected Total

a. R Squared = .915 (Adjusted R Squared = .890)

38

Lampiran 7. Uji lanjut fenol pH awal fenol_awal Duncan Suhu

N

Subset 1

70˚C

12

85˚C

12

100˚C

12

2

3

32.65055

Sig.

43.53731 46.67393 1.000

1.000

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 4.772. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

39

Lampiran 8. Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol simulasi ANOVA fenol_simulasi Sum of Squares Between Groups Within Groups Total

df

Mean Square

1364.055

8

170.507

124.214

27

4.601

1488.270

35

F 37.062

Sig. .000

40

Lampiran 9. Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar total fenol simulasi fenol_simulasi Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

70˚C 10 menit

4

27.87992

70˚C 5 menit

4

28.63408

70˚C 15 menit

4

29.79959

85˚C 15 menit

4

40.23786

85˚C 10 menit

4

40.38354

85˚C 5 menit

4

40.95774

100˚C 15 menit

4

41.74618

100˚C 5 menit

4

43.03168

100˚C 10 menit

4

43.36591

Sig.

.243

.079

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

ALPHA(0.05).

41

Lampiran 10. Uji statistik total fenol pH simulasi (RAL Univariate) Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: fenol_simulasi Source

Type III Sum of

df

Mean Square

F

Sig.

Squares Corrected Model

1364.055

a

8

170.507

37.062

.000

Intercept

50186.900

1

50186.900

10908.939

.000

1349.563

2

674.782

146.675

.000

.763

2

.382

.083

.921

13.729

4

3.432

.746

.569

Error

124.214

27

4.601

Total

51675.170

36

1488.270

35

Suhu Waktu Suhu * Waktu

Corrected Total

a. R Squared = .917 (Adjusted R Squared = .892)

42

Lampiran 11. Uji lanjut fenol pH simulasi fenol_simulasi Duncan Suhu

N

Subset 1

70˚C

12

85˚C

12

100˚C

12

2

3

28.77120

Sig.

40.52638 42.71459 1.000

1.000

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 4.601. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

43

Lampiran 12. Kurva standar tanin terkondensasi

(Porter et al., 1986) Tanin terkondensasi dihitung dalam LE (Leucocyanidin equivalent) % tanin terkondensasi = (A550nm x 78.26 x faktor pengenceran) / (% bk)

44

Lampiran 13. Data kadar tanin terkondensasi

Ekstrak awal teh hijau Perlakuan

70˚C 5' 70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10' 85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15'

Ekstrak teh hijau setelah simulasi pencernaan Tanin terkondensasi Rata-rata ± (g LE/100 g BK ) SD 0.38 0.40 ± 0.02 0.42 0.34 0.34 ± 0.01 0.35 0.36 0.37 ± 0.01 0.37 0.38 0.39 ± 0.01 0.39 0.42 0.42 ± 0.00 0.42 0.44 0.45 ± 0.01 0.45 0.49 0.50 ± 0.02 0.52 0.59 0.59 ± 0.00 0.58 0.50 0.49 ± 0.01 0.49

Ulangan

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Tanin terkondensasi (g/100g) 0.40 0.42 0.35 0.34 0.37 0.39 0.38 0.42 0.42 0.45 0.43 0.46 0.59 0.59 0.58 0.59 0.50 0.51

Rata-rata ± SD 0.41 ± 0.01 0.35 ± 0.01 0.38 ± 0.01 0.40 ± 0.02 0.44 ± 0.02 0.45 ± 0.02 0.59 ± 0.00 0.59 ± 0.00 0.51 ± 0.00

Cara pengenceran: 100 ml ekstrak teh (2 gram bubuk teh) diambil sebanyak 1 ml, kemudian diencerkan sampai dengan 10 ml dengan aquades. Dari pengenceran etrsebut, diambil 0.5 ml untuk pengukuran kadar tanin terkondensasi Sampel ekstrak teh hijau penyeduhan 70˚C 10 menit Contoh perhitungan ulangan 1 sampel 1: = absorbansi sampel x 78.26 x ml larutan yang diuji x pengenceran x

= 0.084 x 78.26 x 0.5 ml x (

.

)x(

)x(

)x(

( .

%

(

)

)xx(

)

x

)

= 0.36 g LE/ 100 g BK

45

Lampiran 14. Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak awal teh hijau ANOVA tanin_awal Sum of Squares

df

Mean Square

Between Groups

.247

8

.031

Within Groups

.004

27

.000

Total

.251

35

F 188.926

Sig. .000

46

Lampiran 15. Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak awal teh hijau tanin_awal Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

3

4

5

6

70˚C 10 menit

4

70˚C 15 menit

4

85˚C 5 menit

4

.40026

70˚C 5 menit

4

.40769

85˚C 10 menit

4

.43742

85˚C 15 menit

4

.44804

100˚C 15 menit

4

100˚C 5 menit

4

.58801

100˚C 10 menit

4

.58928

Sig.

.34616 .37796

.50546

1.000

1.000

.418

.250

1.000

.890

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

ALPHA(0.05).

47

Lampiran 16. Uji statistik tanin terkondensasi pH awal (RAL Univariate) Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: tanin_awal Source

Type III Sum of

df

Mean Square

F

Sig.

Squares Corrected Model

.247

a

8

.031

188.926

.000

Intercept

7.472

1

7.472

45804.865

.000

Suhu

.215

2

.108

660.491

.000

Waktu

.003

2

.001

8.730

.001

Suhu * Waktu

.028

4

.007

43.241

.000

Error

.004

27

.000

Total

7.723

36

.251

35

Corrected Total

a. R Squared = .982 (Adjusted R Squared = .977)

48

Lampiran 17. Uji lanjut tanin terkondensasi pH awal tanin_awal Duncan Suhu

N

Subset 1

70˚C

12

85˚C

12

100˚C

12

2

3

.37727 .42857 .56092

Sig.

1.000

1.000

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = .000. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05. tanin_awal Duncan Waktu

N

Subset 1

15 menit

12

10 menit

12

5 menit

12

Sig.

2

.44382 .45762 .46532 1.000

.151

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = .000. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

49

Lampiran 18. Uji statistik untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak teh hijau setelah simulasi ANOVA tanin_simulasi Sum of Squares

df

Mean Square

Between Groups

.195

8

.024

Within Groups

.005

27

.000

Total

.200

35

F 144.901

Sig. .000

50

Lampiran 19. Uji lanjut Duncan untuk faktor interaksi suhu dan waktu penyeduhan pada kadar tanin terkondensasi ekstrak teh hijau setelah simulasi tanin_simulasi Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

3

4

5

6

7

70˚C 10 menit

4

70˚C 15 menit

4

85˚C 5 menit

4

.38750

70˚C 5 menit

4

.40150

85˚C 10 menit

4

85˚C 15 menit

4

100˚C 15 menit

4

.49250

100˚C 5 menit

4

.50400

100˚C 10 menit

4

Sig.

.34350 .36500

.40150 .41925 .44550

.58950 1.000

1.000

.139

.064

1.000

.221

1.000

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

51

Lampiran 20. Uji statistik tanin terkondensasi pH simulasi (RAL Univariate)

Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: tanin_simulasi Source

Type III Sum of

df

Mean Square

F

Sig.

Squares Corrected Model

.195

a

8

.024

144.901

.000

Intercept

6.928

1

6.928

41124.295

.000

Suhu

.159

2

.080

472.482

.000

Waktu

.003

2

.001

7.962

.002

Suhu * Waktu

.033

4

.008

49.581

.000

Error

.005

27

.000

Total

7.128

36

.200

35

Corrected Total

a. R Squared = .977 (Adjusted R Squared = .970)

52

Lampiran 21. Uji lanjut tanin terkondensasi pH simulasi (RAL Univariate) tanin_simulasi Duncan Suhu

N

Subset 1

70˚C

12

85˚C

12

100˚C

12

2

3

.37000 .41742 .52867

Sig.

1.000

1.000

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = .000. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05. tanin_simulasi Duncan Waktu

N

Subset 1

2

5 menit

12

.43100

15 menit

12

.43433

10 menit

12

Sig.

.45075 .535

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = .000. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

53

Lampiran 22. Data inhibisi lipase pada teh hijau Perlakuan 70˚C 5' 70˚C 10' 70˚C 15' 85˚C 5' 85˚C 10' 85˚C 15' 100˚C 5' 100˚C 10' 100˚C 15'

Ekstrak awal

Ulangan

Inhibisi (%)

1 2 1

56.44 92.12 71.53

2 1 2 1

66.93 77.34 70.04 60.69

2 1 2 1

83.43 68.25 77.22 85.37

2 1 2 1

74.22 90.75 86.09 89.90

2 1

97.03 86.81

2

91.52

Ulangan

rata-rata ± SD 74.28 ± 23.60 69.23 ± 3.10 73.69 ± 4.95 72.06 ± 13.83 72.74 ± 6.26 79.80 ± 8.44 88.42 ± 2.78 93.47 ± 4.63 89.17 ± 3.74

Ekstrak simulasi pencernaan Inhibisi (%)

rata-rata ± SD

1 2 1

57.62 53.76 46.48

2 1 2 1

42.11 68.23 69.12 69.93

68.68 ± 0.76

2 1 2 1

70.52 76.39 67.56 75.24

71.97 ± 5.13

2 1 2 1

72.05 95.45 79.41 91.45

2 1

91.52 74.60

2

65.13

55.69 ± 15.73 44.29 ± 3.98

70.23 ± 1.31

73.65 ± 1.86 87.43 ± 11.89 91.48 ± 0.04 69.86 ± 5.96

Contoh perhitungan: Sampel ekstrak teh hijau suhu penyeduhan 70˚C 10 menit Ulangan 1 sampel 1 % inhibisi =

% inhibisi =

(

) ( (

.

. .

) )

%

%

% inhibisi = 69.54%

54

Lampiran 23. Uji statistik inhibisi pH awal (RAL Univariate)

Univariate Analysis of Variance Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: Inhibisi_Awal Source

Type III Sum of

df

Mean Square

F

Sig.

Squares a

8

317.476

3.053

.014

225844.917

1

225844.917

2171.853

.000

2272.529

2

1136.264

10.927

.000

51.050

2

25.525

.245

.784

216.232

4

54.058

.520

.722

Error

2807.655

27

103.987

Total

231192.383

36

5347.466

35

Corrected Model Intercept Suhu Waktu Suhu * Waktu

Corrected Total

2539.811

a. R Squared = .475 (Adjusted R Squared = .319)

55

Lampiran 24. Uji lanjut inhibisi awal

Inhibisi_Awal Duncan Suhu

N

Subset 1

2

70˚C

12

72.40060

85˚C

12

74.86409

100˚C

12

Sig.

90.35103 .559

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 103.987. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

56

Lampiran 25. Uji statistik inhibisi pH simulasi (RAL Univariate) Between-Subjects Factors Value Label

Suhu

Waktu

N

1

70˚C

12

2

85˚C

12

3

100˚C

12

1

5 menit

12

2

10 menit

12

3

15 menit

12

Tests of Between-Subjects Effects Dependent Variable: Inhibisi_Simulasi Source

Type III Sum of

df

Mean Square

F

Sig.

Squares a

8

824.387

15.718

.000

178243.705

1

178243.705

3398.547

.000

4324.500

2

2162.250

41.227

.000

23.325

2

11.663

.222

.802

Suhu * Waktu

2247.266

4

561.817

10.712

.000

Error

1416.070

27

52.447

Total

186254.867

36

8011.162

35

Corrected Model Intercept Suhu Waktu

Corrected Total

6595.092

a. R Squared = .823 (Adjusted R Squared = .771)

57

Lampiran 26. Uji lanjut (inhibisi simulasi)

Inhibisi_Simulasi Duncan Suhu

N

Subset 1

70˚C

12

85˚C

12

100˚C

12

2

3

56.21950

Sig.

71.94946 82.92563 1.000

1.000

1.000

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 52.447. a. Uses Harmonic Mean Sample Size = 12.000. b. Alpha = 0.05.

58

Lampiran 27. Uji statistik faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH awal

ANOVA Inhibisi_Awal Sum of Squares

df

Mean Square

Between Groups

2745.169

9

305.019

Within Groups

2812.268

30

93.742

Total

5557.437

39

F 3.254

Sig. .007

59

Lampiran 28. Uji lanjut Duncan perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pH awal Inhibisi_Awal Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

3

70˚C 10 menit

4

69.23144

Orlistat

4

71.65250

85˚C 5 menit

4

72.05933

85˚C 10 menit

4

72.73595

70˚C 15 menit

4

73.69034

73.69034

70˚C 5 menit

4

74.28001

74.28001

85˚C 15 menit

4

79.79700

79.79700

79.79700

100˚C 5 menit

4

88.41950

88.41950

100˚C 15 menit

4

89.16551

89.16551

100˚C 10 menit

4

Sig.

93.46808 .190

.050

.076

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

ALPHA(0.05).

60

Lampiran 29. Uji statistik faktor perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pada pH simulasi ANOVA Inhibisi_Simulasi Sum of Squares

df

Mean Square

Between Groups

6845.935

9

760.659

Within Groups

1418.896

30

47.297

Total

8264.830

39

F 16.083

Sig. .000

61

Lampiran 30. Uji lanjut Duncan perlakuan sampel dan Orlistat terhadap inhibisi enzim lipase pH awal

Inhibisi_Simulasi Duncan Perlakuan

N

Subset for alpha = 0.05 1

2

3

4

5

70˚C 10 menit

4

70˚C 5 menit

4

55.69035

Orlistat

4

62.01750

70˚C 15 menit

4

68.67626

68.67626

100˚C 15 menit

4

69.86468

69.86468

85˚C 5 menit

4

70.22901

70.22901

85˚C 10 menit

4

71.97259

71.97259

85˚C 15 menit

4

100˚C 5 menit

4

100˚C 10 menit

4

Sig.

44.29190

62.01750

73.64677 87.43061 91.48161 1.000

.203

.075

.371

.411

Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.

ALPHA(0.05).

62

Lampiran 31. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

74.28001

4

23.596722

11.798361

inhibisi_simulasi

55.69035

4

15.724821

7.862410

fenol_awal

32.37060

4

2.564135

1.282067

fenol_simulasi

Pair 1

Pair 2

28.63408

4

1.527545

.763772

tanin_awal

.40769

4

.009808

.004904

tanin_simulasi

.40150

4

.027135

.013568

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

.348

.652

Pair 2

fenol_awal & fenol_simulasi

4

.000

1.000

Pair 3

tanin_awal & tanin_simulasi

4

1.000

.000

63

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Pair 1

inhibisi_awal - inhibisi_simulasi

Pair 2 Pair 3

Upper

18.589664

23.368284

11.684142

-18.594491

55.773818

1.591

3

.210

fenol_awal - fenol_simulasi

3.736520

2.984133

1.492066

-1.011901

8.484941

2.504

3

.087

tanin_awal - tanin_simulasi

.006193

.017328

.008664

-.021380

.033765

.715

3

.526

64

Lampiran 32. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

69.23144

4

3.094349

1.547174

inhibisi_simulasi

44.29190

4

3.977948

1.988974

fenol_awal

29.59392

4

1.041458

.520729

fenol_simulasi

27.87992

4

1.716626

.858313

tanin_awal

.34616

4

.008049

.004025

tanin_simulasi

.34350

4

.009815

.004907

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

.941

.059

Pair 2

fenol_awal & fenol_simulasi

4

.775

.225

Pair 3

tanin_awal & tanin_simulasi

4

-.902

.098

65

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Upper

Pair 1

inhibisi_awal - inhibisi_simulasi

24.939537

1.498163

.749081

22.555625

27.323448

33.293

3

.000

Pair 2

fenol_awal - fenol_simulasi

1.714000

1.122027

.561013

-.071395

3.499395

3.055

3

.055

Pair 3

tanin_awal - tanin_simulasi

.002661

.017426

.008713

-.025068

.030390

.305

3

.780

66

Lampiran 33. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 70˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

73.69034

4

4.949920

2.474960

inhibisi_simulasi

68.67626

4

.764066

.382033

fenol_awal

35.98714

4

.816987

.408493

fenol_simulasi

Pair 1

Pair 2

29.79959

4

2.981835

1.490917

tanin_awal

.37796

4

.010405

.005203

tanin_simulasi

.36500

4

.004619

.002309

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

-.036

.964

Pair 2

fenol_awal & fenol_simulasi

4

-.912

.088

Pair 3

tanin_awal & tanin_simulasi

4

.943

.057

67

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Upper

Pair 1

inhibisi_awal - inhibisi_simulasi

5.014075

5.036029

2.518015

-2.999371

13.027521

1.991

3

.141

Pair 2

fenol_awal - fenol_simulasi

6.187550

3.741966

1.870983

.233247

12.141853

3.307

3

.045

Pair 3

tanin_awal - tanin_simulasi

.012961

.006241

.003120

.003030

.022892

4.153

3

.025

68

Lampiran 34. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

72.05933

4

13.830949

6.915474

inhibisi_simulasi

70.22901

4

1.312120

.656060

fenol_awal

42.52605

4

2.383118

1.191559

fenol_simulasi

40.95774

4

.253456

.126728

tanin_awal

.40026

4

.020913

.010456

tanin_simulasi

.38750

4

.006557

.003279

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

.333

.667

Pair 2

fenol_awal & fenol_simulasi

4

-.392

.608

Pair 3

tanin_awal & tanin_simulasi

4

.945

.055

69

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Upper

Pair 1

inhibisi_awal - inhibisi_simulasi

1.830325

13.451702

6.725851

-19.574335

23.234985

.272

3

.803

Pair 2

fenol_awal - fenol_simulasi

1.568310

2.493482

1.246741

-2.399377

5.535997

1.258

3

.297

Pair 3

tanin_awal - tanin_simulasi

.012761

.014876

.007438

-.010910

.036432

1.716

3

.185

70

Lampiran 35. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

72.73595

4

6.265704

3.132852

inhibisi_simulasi

71.97259

4

5.125964

2.562982

fenol_awal

43.87154

4

1.746150

.873075

fenol_simulasi

40.38354

4

2.436285

1.218143

tanin_awal

.43742

4

.019615

.009807

tanin_simulasi

.41925

4

.004272

.002136

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

-.433

.567

Pair 2

fenol_awal & fenol_simulasi

4

.970

.030

Pair 3

tanin_awal & tanin_simulasi

4

.878

.122

71

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Pair 1

inhibisi_awal - inhibisi_simulasi

Pair 2 Pair 3

Upper

.763357

9.660631

4.830315

-14.608862

16.135577

.158

3

.884

fenol_awal - fenol_simulasi

3.488005

.852840

.426420

2.130946

4.845064

8.180

3

.004

tanin_awal - tanin_simulasi

.018170

.015993

.007996

-.007278

.043618

2.272

3

.108

72

Lampiran 36. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 85˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

79.79700

4

8.443901

4.221950

inhibisi_simulasi

73.64677

4

1.862634

.931317

fenol_awal

44.21434

4

2.133821

1.066911

fenol_simulasi

Pair 1

Pair 2

40.23786

4

1.782560

.891280

tanin_awal

.44804

4

.017163

.008582

tanin_simulasi

.44550

4

.009815

.004907

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

-.430

.570

Pair 2

fenol_awal & fenol_simulasi

4

-.784

.216

Pair 3

tanin_awal & tanin_simulasi

4

1.000

.000

73

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Upper

Pair 1

inhibisi_awal - inhibisi_simulasi

6.150225

9.396777

4.698389

-8.802144

21.102594

1.309

3

.282

Pair 2

fenol_awal - fenol_simulasi

3.976480

3.700970

1.850485

-1.912589

9.865549

2.149

3

.121

Pair 3

tanin_awal - tanin_simulasi

.002537

.007349

.003674

-.009156

.014230

.690

3

.540

74

Lampiran 37. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 5 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

88.41950

4

2.775034

1.387517

inhibisi_simulasi

87.43061

4

11.889373

5.944687

fenol_awal

46.75106

4

3.233242

1.616621

fenol_simulasi

43.03168

4

1.195548

.597774

tanin_awal

.58801

4

.002293

.001146

tanin_simulasi

.50400

4

.020849

.010424

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

-.332

.668

Pair 2

fenol_awal & fenol_simulasi

4

.860

.140

Pair 3

tanin_awal & tanin_simulasi

4

.996

.004

75

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Pair 1

inhibisi_awal - inhibisi_simulasi

Pair 2 Pair 3

Upper

.988897

13.075147

6.537573

-19.816579

21.794374

.151

3

.889

fenol_awal - fenol_simulasi

3.719380

2.287703

1.143852

.079134

7.359626

3.252

3

.047

tanin_awal - tanin_simulasi

.084014

.018566

.009283

.054472

.113557

9.050

3

.003

76

Lampiran 38. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 10 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

93.46808

4

4.627864

2.313932

inhibisi_simulasi

91.48161

4

.044798

.022399

fenol_awal

47.17099

4

2.395740

1.197870

fenol_simulasi

43.36591

4

3.536812

1.768406

tanin_awal

.58928

4

.006306

.003153

tanin_simulasi

.58950

4

.006557

.003279

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

-.195

.805

Pair 2

fenol_awal & fenol_simulasi

4

.842

.158

Pair 3

tanin_awal & tanin_simulasi

4

-.935

.065

77

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Upper

Pair 1

inhibisi_awal - inhibisi_simulasi

1.986468

4.636788

2.318394

-5.391697

9.364632

.857

3

.455

Pair 2

fenol_awal - fenol_simulasi

3.805080

1.993159

.996580

.633519

6.976641

3.818

3

.032

Pair 3

tanin_awal - tanin_simulasi

-.000225

.012654

.006327

-.020361

.019911

-.036

3

.974

78

Lampiran 39. Uji statistik kadar total fenol, tanin terkondensasi, dan inhibisi lipase pada perlakuan penyeduhan teh hijau 100˚C selama 15 menit pada perbedaan pH awal dan pH simulasi pencernaan

T-Test Paired Samples Statistics Mean

N

Std. Deviation

Std. Error Mean

inhibisi_awal

89.16551

4

3.745833

1.872916

inhibisi_simulasi

69.86468

4

5.959838

2.979919

fenol_awal

46.09974

4

2.268877

1.134438

fenol_simulasi

41.74618

4

2.029191

1.014595

tanin_awal

.50546

4

.006101

.003051

tanin_simulasi

.49250

4

.005196

.002598

Pair 1

Pair 2

Pair 3

Paired Samples Correlations N Pair 1

inhibisi_awal inhibisi_simulasi

&

Correlation

Sig.

4

.435

.565

Pair 2

fenol_awal & fenol_simulasi

4

.477

.523

Pair 3

tanin_awal & tanin_simulasi

4

-.822

.178

79

Paired Samples Test Paired Differences Mean

Std. Deviation

Std. Error Mean

t

df

Sig. (2-tailed)

95% Confidence Interval of the Difference Lower

Pair 1

inhibisi_awal - inhibisi_simulasi

19.300832

5.487020

2.743510

Pair 2 Pair 3

fenol_awal - fenol_simulasi

4.353560

2.207980

tanin_awal - tanin_simulasi

.012964

.010787

Upper

10.569760

28.031905

7.035

3

.006

1.103990

.840172

7.866948

3.943

3

.029

.005393

-.004201

.030128

2.404

3

.096

80

Lampiran 40. Korelasi total fenol dan nilai inhibisi ekstrak awal teh hijau Correlations inhibisi_awal Pearson Correlation inhibisi_awal

1

Sig. (2-tailed)

Pearson Correlation Sig. (2-tailed)

**

.510

.001

N

fenol_awal

fenol_awal

41

36

**

1

.510

.001

N

36

36

**. Correlation is significant at the 0.01 level (2-tailed).

81

Lampiran 41. Korelasi total fenol dan nilai inhibisi ekstrak teh hijau setelah simulasi pH sistem pencernaan

Correlations inhibisi_simulasi

fenol_simulasi

1

.731

Pearson Correlation inhibisi_simulasi

Sig. (2-tailed) N Pearson Correlation

fenol_simulasi

Sig. (2-tailed) N

**

.000 36

36

**

1

.731

.000 36

36

**. Correlation is significant at the 0.01 level (2-tailed).

82

Lampiran 42. Korelasi tanin terkondensasi dan nilai inhibisi ekstrak awal teh hijau

Correlations inhibisi_awal Pearson Correlation inhibisi_awal

1

Sig. (2-tailed)

Pearson Correlation Sig. (2-tailed)

**

.622

.000

N

tanin_awal

tanin_awal

41

36

**

1

.622

.000

N

36

36

**. Correlation is significant at the 0.01 level (2-tailed).

83

Lampiran 43. Korelasi kadar tanin terkondensasi dengan inhibisi lipase ekstrak teh hijau setelah simulasi pH sistem pencernaan

Correlations inhibisi_simulasi

tanin_simulasi

1

.725

Pearson Correlation inhibisi_simulasi

Sig. (2-tailed) N Pearson Correlation

tanin_simulasi

Sig. (2-tailed) N

**

.000 36

36

**

1

.725

.000 36

36

**. Correlation is significant at the 0.01 level (2-tailed).

84