Unit I (Vector Calculus) - hariganesh.com

To buy the book visit www.hariganesh.com/textbook (Scan the above QR code for the direct download of this material) Unit...

3 downloads 637 Views 739KB Size
Engineering Mathematics

2018

SUBJECT NAME

: Mathematics - II

SUBJECT CODE

: MA6251

MATERIAL NAME

: University Questions

REGULATION

: R2013

UPDATED ON

: November 2017

TEXTBOOK FOR REFERENCE

: Sri Hariganesh Publications (Author: C. Ganesan)

To buy the book visit

www.hariganesh.com/textbook

(Scan the above QR code for the direct download of this material)

Unit – I (Vector Calculus)  Simple problems on vector calculus 1.

Find the directional derivative of 

 4xz 2  x 2 yz at  1, 2,1 in the direction of

2i  3 j  4k . 2.

Show that

(N/D 2016)

F   y 2  2 xz 2  i   2 xy  z  j   2 x 2 z  y  2z  k is irrotational and

hence find its scalar potential.

3.

Show that

Show that

(Textbook Page No.: 1.47)

Prove that

Prove that

(Textbook Page No.: 1.32)

(N/D 2014),(N/D 2017)

F   y 2 cos x  z 3  iˆ   2 y sin x  4  ˆj  3 xz 2 kˆ is irrotational and find its

scalar potential.

7.

(N/D 2013)

F   x 2  y 2  x  iˆ   2 xy  y  ˆj is a conservative field and find the scalar

potential.

6.

(N/D 2012)

F   x 2  xy 2  i   y 2  x 2 y  j is irrotational and find its scalar potential.

Textbook Page No.: 1.47

5.

(M/J 2012)

F   2 xy  z 2  i   x 2  2 yz  j   y 2  2zx  k is irrotational and

find its scalar potential.

4.

(Textbook Page No.: 1.26)

(Textbook Page No.: 1.47)

Find the angle between the normals to the surface

 3, 3, 3 .

(N/D 2016)

xy  z 2 at the points  1, 4, 2  and

(Textbook Page No.: 1.17)

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(A/M 2011)

Page 1

Engineering Mathematics 8.

Find the angle between the normals to the surface

 2, 4,1 . 9.

Find the angle between the surfaces

Find

x 2  yz at the points  1,1,1 and

(Textbook Page No.: 1.9)

 2, 1, 2  . 10.

2018

(N/D 2014)

x 2  y 2  z 2  9 and z  x 2  y 2  3 at the point

(Textbook Page No.: 1.10)

(N/D 2016)

a and b so that the surfaces ax 3  by 2 z  (a  3) x 2  0 and 4 x 2 y  z 3  11  0

orthogonally at the point

 2, 1, 3 .

cut

(N/D 2013),(M/J 2016)

Textbook Page No.: 1.12

11.

If

r is the position vector of the point  x , y, z  , Prove that  2 r n  n(n  1)r n 2 . Hence find

the value of

12.

Evaluate

1 2   . r

x

2

(Textbook Page No.: 1.42)

(N/D 2010),(M/J 2015)

 xy  dx   x 2  y 2  dy where C is the square bounded by the

C

lines

x  0, x  1, y  0 and y  1 .

(N/D 2009),(N/D 2011)

Textbook Page No.: 1.52

13.

Evaluate

 F

n ds where F  2 xyi  yz 2 j  xzk and S is the surface of the

s

x  0, y  0, z  0, x  2, y  1 and z  3 .

parallelepiped bounded by

(M/J 2011)

Textbook Page No.: 1.55

 Green’s Theorem 1.

Verify Green’s theorem for the lines

V   x 2  y 2  i  2 xyj taken around the rectangle bounded by

x   a, y  0 and y  b .

(N/D 2012),(Jan 2016)

Textbook Page No.: 1.71

2.

Using Green’s theorem in a plane evaluate

  x 1  y  dx   x 2

C

the square formed by

x  1 and y  1 .

3

 y 3  dy  where C is (M/J 2016)

Textbook Page No.: 1.69

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 2

Engineering Mathematics 3.

2018

Verify Green’s theorem in a plane for

  3 x C

4.

2

 8 y 2  dx   4 y  6 xy  dy  , Where C is the

boundary of the region defined by the lines

x  0, y  0 and x  y  1 .

Textbook Page No.: 1.79

(N/D 2010),(A/M 2011),(M/J 2011), (M/J 2012)

Verify Green’s theorem for

  3x

2

 8 y 2  dx   4 y  6 xy  dy where C is the boundary of

C

the region defined by

x  y2 , y  x2 .

(M/J 2010)

Textbook Page No.: 1.74

5.

Apply Green’s theorem to evaluate

  xy  x  dx  x 2

2

ydy along the closed curve C formed by

C

y  0 , x  1 and y  x .

(N/D 2017)

 Stoke’s Theorem 1.

Verify Stokes theorem for bounded by the lines

F   x 2  y 2  i  2 xyj in the rectangular region of z  0 plane

x  0, y  0, x  a and y  b .

(M/J 2014)

Textbook Page No.: 1.111

2.

Verify Stoke’s theorem for lines

F   x 2  y 2  i  2 xyj taken around the rectangle formed by the

x  a, x  a, y  0 and y  b .

(N/D 2013)

Textbook Page No.: 1.114

3.

Verify Stoke’s theorem for

F  xyi  2 yzj  zxk where S is the open surface of the

rectangular parallelepiped formed by the planes above the XY plane.

4.

Verify Stoke’s theorem when

x  0, x  1, y  0, y  2 and z  3

(Textbook Page No.: 1.122)

(M/J 2009)

F   2 xy  x 2  i   x 2  y 2  j and C is the boundary of the

region enclosed by the parabolas

y 2  x and x 2  y .

(N/D 2009)

Textbook Page No.: 1.117

5.

Verify Stoke’s theorem for the vector field surface

F  (2 x  y )i  yz 2 j  y 2 zk over the upper half

x 2  y 2  z 2  1 , bounded by its projection on the xy -plane.

Textbook Page No.: 1.120

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(M/J 2013)

Page 3

Engineering Mathematics 6.

2018

Using Stokes theorem, evaluate

F

dr , where F  y 2 i  x 2 j  ( x  z )k and ‘C’ is the

C

boundary of the triangle with vertices at

 0,0,0 , 1,0,0  , 1,1,0  .

(M/J 2012)

Textbook Page No.: 1.128

 Gauss Divergence Theorem 1.

Verify Gauss Divergence theorem for

F  4 xzi  y 2 j  yzk over the cube bounded by

x  0, x  1, y  0, y  1, z  0, z  1 . (N/D 2010),(A/M 2011),(N/D 2012),(N/D 2013),(N/D 2014),(M/J 2015) Textbook Page No.: 1.87

2.

F  x 2 i  y 2 j  z 2 k where S is the surface of the cuboid formed by the planes x  0, x  a, y  0, y  b, z  0 and z  c . (M/J 2009) Verify Gauss divergence theorem for

Textbook Page No.: 1.93

3.

Verify Gauss divergence theorem for the planes

F  x 2 i  y 2 j  z 2 k taken over the cube bounded by

x  0, y  0, z  0, x  1, y  1 and z  1 .

(M/J 2014),(N/D 2017)

Textbook Page No.: 1.136

4.

Verify Gauss – divergence theorem for the vector function over the cube bounded by

f   x 3  yz  i  2 x 2 yj  2k

x  0, y  0, z  0 and x  a, y  a, z  a .

Textbook Page No.: 1.90

5.

Verify divergence theorem for

x  1, y  1, z  1 . 6.

Verify Gauss’s theorem for F

(M/J 2010),(N/D 2011)

F  x 2 i  zj  yzk over the cube formed by the planes (Textbook Page No.: 1.100)

(M/J 2013)

  x 2  yz  i   y 2  zx  j   z 2  xy  k over the

rectangular parallelepiped bounded by

x  0, x  a, y  0, y  b, z  0 and z  c .

Textbook Page No.: 1.96

7.

Verify Gauss’s theorem for F

(Jan 2016)

  x 2  yz  i   y 2  zx  j   z 2  xy  k over the

rectangular parallelepiped formed by

0  x  1,0  y  1 and 0  z  1 .

Textbook Page No.: 1.136

(N/D 2011),(N/D 2016)

Unit – II (Ordinary Differential Equation) Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 4

Engineering Mathematics

2018

 ODE with Constant Coefficients





(N/D 2017)

 2 D  2  y  e 2 x  cos 2 x .

(N/D 2016)

1.

Solve D3  5D2  7 D  3 y  e2 x cosh x .

2.

Solve

D

2

Textbook Page No.: 2.31

3.

Solve

D

3

 2 D2  D  y  e  x  cos 2 x .

(Jan 2016)

Textbook Page No.: 2.29

D

2

 4 D  3  y  cos 2 x  2 x 2 .

4.

Solve

5.

Solve :

6.

Solve the equation

D

2

(M/J 2014)

 3 D  2  y  sin x  x 2 . (Textbook Page No.: 2.37)

D

2

 5 D  4  y  e  x sin 2 x .

(M/J 2011) (A/M 2011),(ND 2012)

Textbook Page No.: 2.43

7.

Solve the equation

D

2

 4 D  3  y  e  x sin x .

(M/J 2010)

Textbook Page No.: 2.59

8.

Solve

D

2

 4 D  3  y  e x cos 2 x .

9.

Solve

D

2

 4 D  3  y  6e 2 x sin x sin 2 x .

(Textbook Page No.: 2.59)

(M/J 2012) (N/D 2011)

Textbook Page No.: 2.46

10.

Solve

D

2

 3 D  2  y  xe 3 x  sin 2 x . (Textbook Page No.: 2.59)

(M/J 2015)

11.

Solve

D

2

 2D  5 y  e  x x 2 .

(N/D 2014)

d2 y dy  2  y  8 xe x sin x . 12. Solve 2 dx dx

(Text Book Page No.: 2.56)

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(N/D 2013)

Page 5

Engineering Mathematics

D

2

 2 D  1 y  xe  x cos x .

13.

Solve

14.

Solve the equation

D

2

2018 (Textbook Page No.: 2.55)

 4  y  x 2 cos 2 x .

(M/J 2016) (M/J 2009),(N/D 2011)

Textbook Page No.: 2.53

 Method of Variation of Parameters 1.

Solve

d2 y  a 2 y  tan ax by method of variation of parameters. dx 2

Textbook Page No.: 2.118 2.

Solve

y  y  tan x

(M/J 2009),(M/J 2011),(M/J 2014)

using the method of variation of parameters.

(M/J 2016)

Textbook Page No.: 2.120

d2 y  4 y  tan 2 x by method of variation of parameters. dx 2

3.

Solve

4.

Apply method of variation of parameters to solve

D

2

 4  y  cot 2 x .

Textbook Page No.: 2.122 5.

Solve

D

2

(N/D 2013),(N/D 2014)

(N/D 2009),(N/D 2011)

 a 2  y  sec ax using the method of variation of parameters.

(M/J 2012)

Textbook Page No.: 2.124

6.

d2 y  y  sec x . Using method of variation of parameters, Solve dx 2

(N/D 2016)

Textbook Page No.: 2.126

7.

Solve

d2 y  y  cos ecx by the method of variation of parameters. dx 2

Textbook Page No.: 2.128 8.

9.

Solve

D

2

(A/M 2011),(ND 2012)

 1 y  cos ecx cot x using the method of variation of parameters.

Textbook Page No.: 2.129

(A/M 2015)

d2 y dy e x  2  y  2 by the method of variation of parameters. Solve dx 2 dx x

(M/J 2013)

Textbook Page No.: 2.133

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 6

Engineering Mathematics 10.

2018

Solve, by the method of variation of parameters,

y  2 y  y  e x log x .(M/J 2015)

Textbook Page No.: 2.139

 Cauchy and Legendre Equations 1.

Solve

d2 y dy 1  4x  2 y  x2  2 . 2 dx dx x

x2

(M/J 2013)

Textbook Page No.: 2.65 2.

Solve

x D

3.

Solve

x D

2

2

2

2

 xD  1 y  sin  log x  .

(N/D 2014)

 2 xD  4  y  x 2  2log x .

(M/J 2010)

Textbook Page No.: 2.71

4.

Solve

x2

d2 y dy x  y  log x . 2 dx dx

(N/D 2016)

Textbook Page No.: 2.73 5.

Solve

x D 2

2

 3 xD  4  y  x 2 cos  log x  .

(N/D 2010)

Textbook Page No.: 2.79 6.

Solve

x D 2

2

 xD  4  y  x 2 sin  log x  .

(M/J 2012),(N/D 2009)

Textbook Page No.: 2.76 7.

Solve

x D 2

2

 xD  2  y  x 2 log x .

(M/J 2016)

Textbook Page No.: 2.80 2

 x 2 D2  xD  1 y   logx x  . (Textbook Page No.: 2.82)

8.

Solve

9.

Solve the equation

d 2 y 1 dy 12log x   . dx 2 x dx x2

(M/J 2014)

(N/D 2012)

Textbook Page No.: 2.84

d2 y dy  3x  4 y  x 2 ln x . 10. Solve x 2 dx dx 2

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(N/D 2011)

Page 7

Engineering Mathematics

2018

Textbook Page No.: 2.102

11.

Solve:

d2 y dy  (1  x )  y  4cos  log(1  x ) . 2 dx dx

(1  x )2

(N/D 2011)

Textbook Page No.: 2.97

12.

Solve

(1  x )2

d2 y dy  (1  x )  y  2sin  log(1  x ) . 2 dx dx

(A/M 2011)

Textbook Page No.: 2.102

13.

Solve

 3 x  2

2

d2 y dy  3  3 x  2   36 y  3 x 2  4 x  1 . 2 dx dx

(M/J 2013)

Textbook Page No.: 2.95 14.

Solve

 2 x  7

2

y  6  2 x  7  y  8 y  8 x .

(Jan 2016)

Textbook Page No.: 2.91

 Simultaneous Differential Equations 1.

Solve

dx dy  2 y   sin t ,  2 x  cos t . dt dt

(M/J 2014)

Textbook Page No.: 2.105

2.

Solve

dx dy  y  t and  x  t 2 given x(0)  y(0)  2 . dt dt

Textbook Page No.: 2.107

3.

Solve

(A/M 2011),(M/J 2016),(N/D 2011)

dx dy  y  et , x  t. dt dt

(N/D 2012),(N/D 2014)

Textbook Page No.: 2.110

4.

Solve

dx dy  2 x  3 y  2e 2 t ,  3 x  2 y  0. dt dt

(M/J 2010)

Textbook Page No.: 2.117

5.

Solve

dx dy  5x  2 y  t,  2 x  y  0. dt dt

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(M/J 2013)

Page 8

Engineering Mathematics

2018

Textbook Page No.: 2.117

6.

Solve

dx dy  2 x  3 y  0 and 3 x   2 y  2e 2 t . dt dt

(N/D 2016)

Textbook Page No.: 2.1117

7.

Solve

dx dy  4 x  3 y  t and  2 x  5 y  e 2t . dt dt

(N/D 2013)

Textbook Page No.: 2.117

8.

Solve the simultaneous differential equations:

dx dy dx   3 x  sin t ,  y  x  cos t . dt dt dt

Textbook Page No.: 2.114

(M/J 2015)

Unit – III (Laplace Transform)  Laplace Transform of Periodic Function 1.

Find the Laplace transform of Textbook Page No.: 3.51

2.

for 0  t  a t , , f (t  2a )  f (t ) . f (t )    2a  t , for a  t  2a (M/J 2009),(N/D 2009),(A/M 2011),(N/D 2014),(M/J 2015)

Find the Laplace transform of the following triangular wave function given by

0 t  t , and f (t  2 )  f (t ) . f (t )    2  t ,   t  2

(M/J 2010),(M/J 2012)

Textbook Page No.: 3.53 3.

Find the Laplace transform of square wave function defined by

1, in 0  t  a f (t )   with period 2a .  1, in a  t  2a

(N/D 2009)

Textbook Page No.: 3.53 4.

Find the Laplace transform of square wave function (or Meoander function) of period

a  1, in 0 t    2 a as f ( t )   .  1, in a  t  a   2

(M/J 2013)

Textbook Page No.: 3.47

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 9

Engineering Mathematics 5.

2018

Find the Laplace transform of

f (t )  E ,

0t a

  E , a  t  2a

and

f (t  2a )  f (t ) for all t .

(N/D 2010)

Textbook Page No.: 3.45 6.

Find the Laplace transform of a square wave function given by

a   E for 0  t  2 , and f ( t  a )  f ( t ) . f (t )   a   E for ta  2 Textbook Page No.: 3.53

7.

(N/D 2011),(M/J 2016),(N/D 2016),(N/D 2017)

Find the Laplace transform of the Half wave rectifier and

sin  t , 0  t   /  f (t )    /   t  2 /   0,

f (t  2 /  )  f (t ) for all t .

Textbook Page No.: 3.48

(N/D 2012),(M/J 2014)

 Simple Problems and Initial & Final Value Theorem 1.

Find

 e  t  cos t  L  e  t sin2 3t  and L  . t  

(Jan 2016)

Textbook Page No.: 3.23 2.

Find the Laplace transform of e

t

t cos t .

(N/D 2014)

Textbook Page No.: 3.18 3.

Find the Laplace transform of

f (t )  te 3 t cos 2t .

(M/J 2014)

Textbook Page No.: 3.19 4.

Find

L  t 2e 3 t sin 2t  .

(Text Book Page No.: 3.21)

(M/J 2013)

5.

Find

L  t 2e  t cos t  .

(Textbook Page No.: 3.20)

(M/J 2016)

6.

Verify initial and final value theorems for Textbook Page No.: 3.41

f (t )  1  e  t (sin t  cos t ) . (M/J 2010),(N/D 2010),(M/J 2012)

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 10

Engineering Mathematics 7.

Find

2018

 cos at  cos bt  L . t  

(A/M 2011),(N/D 2012),(M/J 2015)

Textbook Page No.: 3.25 8.

Find the Laplace transform of

1  cos t . t

(Textbook Page No.: 3.16)

(N/D 2014)



9.

Evaluate

 te

2 t

cos t dt using Laplace transforms.

(N/D 2011),(M/J 2012)

0

Textbook Page No.: 3.33

10.

Find

  s   L1  2 . 2 s  1 s  4       

(Textbook Page No.: 3.70)

(M/J 2015)

11.

Find

  s2 . L1  2 2 2 2   s  a  s  b  

(Textbook Page No.: 3.73)

(A/M 2015)

12.

Find the inverse Laplace transform of

 s 1 log  .  s 1

(N/D 2013)

Textbook Page No.: 3.86

 Inverse Laplace Transform Using Convolution Theorem 1.



  . s  a s  b       

Using Convolution theorem L1  

1

(A/M 2011)

Textbook Page No.: 3.197



2.

Apply convolution theorem to evaluate L1 

s

  s2  a2  

2

 .  

(M/J 2010),(M/J 2012)

Textbook Page No.: 3.100



3.

  using convolution theorem.   s2  42   

Find L1 

s2

(N/D 2012)

Textbook Page No.: 3.102

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 11

Engineering Mathematics 4.

2018 

  using convolution theorem.   s  4  s  9  

Using convolution theorem, find L1 

s

2

2

Textbook Page No.: 3.105 (similar problem)

5.

Find the inverse Laplace transform of Textbook Page No.: 3.103

6.

s

(N/D 2016)

s2

2

 a 2  s 2  b 2 

using convolution theorem.

(N/D 2010),(M/J 2011),(M/J 2014),(N/D 2014),(M/J 2016)

Using convolution theorem find the inverse Laplace transform of

s

Textbook Page No.: 3.108

4

2

 2s  5

2

.

(M/J 2013)

 Solving Differential Equation By Laplace Transform 1.

Solve

dx d2x dx  5 for t  0 using Laplace transform  3  2 x  2 , given x  0 and 2 dt dt dt

method.

2.

(Textbook Page No.: 3.115)

d2 y  4 y  sin 2t given y(0)  3, y(0)  4 . Using Laplace transform, solve dt 2 Textbook Page No.: 3.126

3.

Solve the differential equation

(M/J 2014)

d2 y  y  sin 2t ; y(0)  0, y(0)  0 by using Laplace dt 2

transform method. 4.

(Textbook Page No.: 3.124)

Using Laplace transform solve the differential equation

y(0)  1  y(0) . 5.

Solve the differential equation

Using Laplace transform, solve

Solve

(M/J 2010),(N/D 2010)

d2 y dy  3  2 y  e  t with y(0)  1 and y(0)  0 , 2 dt dt (Textbook Page No.: 3.145)

D

2

(M/J 2012)

 3 D  2  y  e 3 t given y(0)  1 and y(0)  1 .

Textbook Page No.: 3.117 7.

(N/D 2009)

y  3 y  4 y  2e  t with

(Textbook Page No.: 3.120)

using Laplace transform. 6.

(A/M 2011),(N/D 2012)

(N/D 2016)

y  5 y  6 y  2, y(0)  0, y(0)  0 , using Laplace transform. (M/J 2013)

Textbook Page No.: 3.113

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 12

Engineering Mathematics 8.

2018

Solve, by Laplace transform method, the equation

y(0)  0, y(0)  1 . 9.

d2 y dy  2  5 y  e  t sin t , 2 dt dt

(Textbook Page No.: 3.132)

y  y  t 2  2t , y(0)  4, y(0)  2 .

Using Laplace transforms, solve Textbook Page No.: 3.136

10.

Solve the differential equation

(M/J 2011),(Jan 2016)

(N/D 2013),(M/J 2016),(N/D 2017)

y  3 y  2 y  4t  e , where y(0)  1, y(0)  1 using 3t

Laplace transforms.

(Textbook Page No.: 3.138)

(M/J 2015)

Unit – IV (Analytic Function)  Harmonic Function & Analytic Function 1.

Prove that the real and imaginary parts of an analytic function are harmonic functions. Textbook Page No.: 4.21

2.

When the function orthogonal.

3.

Show that

(M/J 2014)

f ( z )  u  iv is analytic, prove that the curves u  c1 and v  c2 are

(Textbook Page No.: 4.22)

u

1 log  x 2  y 2  is harmonic. Determine its analytic function. Find also its 2

conjugate. 4.

Prove that

(N/D 2009),(N/D 2016)

(Textbook Page No.: 4.40)

u  x 2  y 2 and v 

(A/M 2011),(N/D 2017)

y are harmonic but u  iv is not regular. x  y2 2

Textbook Page No.: 4.32 5.

Prove that

(N/D 2010)

u  x 2  y 2 and v 

conjugates. 6.

7.

(Textbook Page No.: 4.32)

Prove that every analytic function function of

y are harmonic functions but not harmonic x  y2 2

z.

w  u  iv

can be expressed as a function

(Textbook Page No.: 4.18)

Determine the analytic function whose real part is

Determine the analytic function

z

alone, not as a

(M/J 2010),(M/J 2012)

sin 2 x . cosh 2 y  cos 2 x

Textbook Page No.: 4.47 8.

(N/D 2014),(Jan 2016)

(N/D 2012),(N/D 2014)

w  u  iv

if

u  e 2 x ( x cos 2 y  y sin 2 y ) .

Textbook Page No.: 4.43

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(M/J 2015)

Page 13

Engineering Mathematics 9.

Show that

2018

v  e  x  x cos y  y sin y  is harmonic function. Hence find the analytic function

f ( z )  u  iv . 10.

(Textbook Page No.: 4.44)

Find the analytic function

f ( z )  u  iv

whose real part is

(M/J 2014)

u  e x ( x cos y  y sin y ) . Find

also the conjugate harmonic u .

(N/D 2016)

Textbook Page No.: 4.45 11.

Prove that

u  e x ( x cos y  y sin y ) is harmonic (satisfies Laplace’s equation) and hence find

the analytic function

f ( z )  u  iv .

(N/D 2010),(M/J 2013)

Textbook Page No.: 4.45

 2 2  2 2  2  f ( z )  4 f ( z ) . 12. If f ( z ) is a analytic function of z , prove that  2 y   x Textbook Page No.: 4.25

(M/J 2009), (A/M 2011),(M/J 2013),(N/D 2014),(M/J 2016)

 2 2   2  log f ( z )  0 . (M/J 2012) 13. If f ( z ) is an analytic function of z , prove that  2 y   x Textbook Page No.: 4.26

 Conformal Mapping 1.

Find the image of the half plane

x  c , when c  0 under the transformation w 

Show the regions graphically.

1 . z

(M/J 2009),(N/D 2012)

Textbook Page No.: 4.64

2.

Find the image of

z  1  1 under the mapping w 

1 . z

(M/J 2014)

Textbook Page No.: 4.65

3.

Find the image of the circle

z  2i  2 under the transformation w 

Textbook Page No.: 4.67

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

1 . z

(M/J 2013),(N/D 2017)

Page 14

Engineering Mathematics 4.

Find the image in the

w

5.

2018

w -plane of the infinite strip

1 . z

1 1  y  under the transformation 4 2

(Textbook Page No.: 4.69)

(M/J 2015)

x 2  y 2  1 under the transformation w 

Find the image of the hyperbola Textbook Page No.: 4.70

6.

(M/J 2010),(M/J 2012),(N/D 2012)

Prove that the transformation w of

w - plane.

z maps the upper half of z - plane on to the upper half 1 z



z  1 under this transformation?

What is the image of

Textbook Page No.: 4.71 7.

Prove that the transformation

1 . z

(M/J 2010),(N/D 2012),(N/D 2013)

w

of circles or straight lines.

1 maps the family of circles and straight lines into the family z

(Textbook Page No.: 4.73)

(N/D 2011),(N/D 2016)

 Bilinear Transformation 1.

Find the bilinear transformation which maps the points

w  i ,1,0 respectively. 2.

(Textbook Page No.: 4.84)

Find the bilinear transformation that transforms the points points

3.

z  0,  i , 1 into w – plane

w  2, i ,  2 of the w-plane.

(M/J 2009)

z  1, i ,  1 of the z-plane into the

(Textbook Page No.: 4.85)

Find the bilinear transformation which maps the points

w  i ,1, 1 respectively.

(M/J 2016)

z  0,1,  into (M/J 2010),(M/J 2012),(M/J 2013)

Textbook Page No.: 4.86

4.

Find the bilinear transformation that maps the points

z  , i ,0 onto w  0, i ,  respectively.

Textbook Page No.: 4.88

5.

(N/D 2012)

Find the bilinear map which maps the points image of the unit circle of the

z

z  0, 1, i onto points w  i ,0,  . Also find the

plane.

(N/D 2013),(M/J 2015)

Textbook Page No.: 4.88

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 15

Engineering Mathematics 6.

2018

Find the bilinear transform which maps

i ,  i ,1 in z-plane into 0,1, 

of w-plane respectively.

Textbook Page No.: 4.90

7.

(Jan 2016)

Find the bilinear transformation which maps the points

z  0, 1,  1 onto the points

w   1, 0,  . Find also the invariant points of the transformation.

(N/D 2016)

Textbook Page No.: 4.91

8.

Find the bilinear transformation that transforms

 of the w – plane. 9.

1, i and 1 of the z – plane onto 0, 1 and

(Textbook Page No.: 4.99)

Find the bilinear transformation that transforms

(M/J 2014)

1, i and 1 of the z – plane onto 0, 1 and

 of the w – plane. Also show that the transformation maps interior of z – plane on to upper half of the w – plane.

the unit circle of the (N/D 2010)

Textbook Page No.: 4.92

10.

Find the bilinear transformation which maps the points

z  1, i , 1 into the points

w  i ,0,  i . Hence find the image of z  1 .

(M/J 2011),(N/D 2014),(N/D 2017)

Textbook Page No.: 4.94

Unit – V (Complex Integration)  Cauchy Integral Formula and Cauchy Residue Theorem 1.

Using Cauchy’s integral formula, evaluate

4  3z

 z( z  1)( z  2) dz , Where ‘ C ’ is the C

circle

2.

z 

3 . 2

(Textbook Page No.: 5.14)

sin  z 2  cos  z 2 dz , where C is z  3 . Evaluate  ( z  1)( z  2) C

(M/J 2010)

(N/D 2011),(M/J 2013)

Textbook Page No.: 5.12 3.

Using Cauchy’s integral formula evaluate

z c

2

z dz , where C is the circle z  i  1 . 1

Textbook Page No.: 5.15

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(M/J 2011)

Page 16

Engineering Mathematics 4.

2018

Evaluate using Cauchy’s integral formula

z 1

  z  3 z  1 dz where C

is the circle

z 2.

C

Textbook Page No.: 5.34 5.

Evaluate

z

2

c

(M/J 2016)

z4 dz , where C is the circle z  1  i  2 , using Cauchy’s integral  2z  5

formula.

(N/D 2010),(N/D 2011),(N/D 2012)

Textbook Page No.: 5.16 6.

Evaluate

z

2

c

z 1 dz , where C is the circle z  1  i  2 , using Cauchy’s integral  2z  4

formula.

7.

(Textbook Page No.: 5.34)

Using Cauchy’s integral formula, evaluate

(N/D 2014)

z

 ( z  1) ( z  2) dz , where is the circle 2

C

z  1  1. 8.

Textbook Page No.: 5.24

z2 Evaluate C ( z  1)2 ( z  2) dz where C

is

(N/D 2016)

z  3.

(M/J 2015)

Textbook Page No.: 5.27 9.

Evaluate

zdz

  z  1 z  2

2

where

c is the circle z  2 

c

Textbook Page No.: 5.23

10.

1 using Cauchy’s integral formula. 2 (M/J 2009),(N/D 2009),(M/J 2012)

Using Cauchy’s integral formula evaluate

e2z

  z  1

4

dz where C is z  2 . (Jan 2016)

C

Textbook Page No.: 5.22 11.

Evaluate

 (z C

2

z 1 dz where C is z  1  i  2 using Cauchy’s integral formula.  2 z  4)2

Textbook Page No.: 5.29

12.

Evaluate

(A/M 2011),(N/D 2013)

z 1

 ( z  1) ( z  2) dz , where C is the circle z  i  2 using Cauchy’s 2

C

residue theorem.

(Textbook Page No.: 5.92)

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(M/J 2012)

Page 17

Engineering Mathematics 13.

2018

Using Cauchy’s residue theorem evaluate

z 1

 ( z  1) ( z  2) dz , where C is 2

z i  2.

C

Textbook Page No.: 5.97 14.

Evaluate

 (z C

2

(M/J 2014)

z dz , where C is the circle z  i  1 , using Cauchy’s residue theorem.  1)2

Textbook Page No.: 5.94

(N/D 2016)

 Contour Integral of Types – I ,II &III 2

1.

Evaluate

d

 2  cos 

using contour integration.

(Textbook Page No.: 5.98)

0

(N/D 2009), (M/J 2010), (N/D 2010) ,(A/M 2011),(N/D 2017) 2

2.

Evaluate

d

 13  12cos

using contour integration.

(M/J 2016)

0

Textbook Page No.: 5.102 2

3.

Evaluate

d

 13  5sin  .

(Textbook Page No.: 5.104)

(M/J 2014)

0

2

4.

Evaluate

d  a  b cos  a  b  0 , using contour integration.

(N/D 2011)

0

Textbook Page No.: 5.109 2

5.

Evaluate

cos 3

 5  4cos d

using contour integration.

(M/J 2013)

0

Textbook Page No.: 5.111 2

6.

Evaluate, by contour integration,

d

 1  2a sin  a

2

,0  a  1.

(M/J 2011)

0

Textbook Page No.: 5.116 

7.

Evaluate

x 2dx   x 2  a 2  x 2  b2  , a  b  0 .

(M/J 2009),(M/J 2013)

Textbook Page No.: 5.126

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 18

Engineering Mathematics

2018



8.

Evaluate

x 2 dx using contour integration.  2 2   x  9  x  4 

(N/D 2014)

Textbook Page No.: 5.154 

9.

Evaluate

 x



2

dx using contour integration.  1 x 2  4 

(N/D 2010)

Textbook Page No.: 5.124 

10.

x2  x  2 Evaluate  x 4  10 x 2  9 dx

using contour integration.

Textbook Page No.: 5.129

(M/J 2010),(A/M 2011),(N/D 2013) 

11.

Evaluate by using contour integration

 0

dx

1  x2 

2

.

(M/J 2014)

Textbook Page No.: 5.131 

12.

Evaluate

 0

x

dx 2

 a2 

3

,

a  0 using contour integration.

(N/D 2009)

Textbook Page No.: 5.135 

13.

Evaluate

cos mx dx , using contour integration. 2  a2

x 0

(M/J 2012),(N/D 2016)

Textbook Page No.: 5.145 

14.

Evaluate

 0

x sin mx dx where a  0 , m  0 . x2  a2

(M/J 2016)

Textbook Page No.: 5.149 

15.

Evaluate

 x



2

cos x dx ,a  b  0.  a 2  x 2  b 2 

(N/D 2011)

Textbook Page No.: 5.147

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 19

Engineering Mathematics

2018

 Taylor’s and Laurent’s Series 1.

f (z) 

Expand

z  3.

z2  1 as a Laurent’s series in the regions z  2 , 2  z  3 and ( z  2)( z  3) (Textbook Page No.: 5.53)

(M/J 2009),(A/M 2011),(M/J 2011),(N/D 2011),(M/J 2013),(M/J 2014),(M/J 2015)

2.

Evaluate

f (z) 

1

 z  1 z  3 

in Laurent series valid for the regions

Textbook Page No.: 5.44

3.

4.

(N/D 2009),(M/J 2012)

Expand as a Laurent’s series of the function (ii) 1 

z  2 (iii) z  2 .

f (z) 

z in the region (i) z  1 z  3z  2 2

(Textbook Page No.: 5.50)

Find the Laurent’s series expansion of

f (z) 

(M/J 2016)

1 valid in the region 1  z  1  2 . z  5z  6 2

Textbook Page No.: 5.56

5.

6.

(N/D 2016)

Find the Laurent’s series expansion of

1  z  2.

z  3 and 1  z  3 .

f (z) 

1

 z  1 z  2 

valid in the regions

(Textbook Page No.: 5.47)

Obtain the Laurent’s expansion of

f (z) 

z  1 and

(N/D 2014),(N/D 2017)

z 2  4z  2 in 3  z  2  5 .(Jan 2016) z 3  2z 2  5z  6

Textbook Page No.: 5.66

7.

Find the residues of

f (z) 

z2

 z  1  z  2  2

2

at its isolated singularities using Laurent’s

series expansions. Also state the valid region.

(N/D 2010),(N/D 2012)

Textbook Page No.: 5.78

8.

Find the residues of expansion.

f (z) 

z2

 z  2  z  1

2

at its isolated singularities using Laurent’s series

(Textbook Page No.: 5.76)

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

(N/D 2013)

Page 20

Engineering Mathematics

2018

Textbook for Reference: “ENGINEERING MATHEMATICS - II” Edition: 2nd Edition Publication: Sri Hariganesh Publications

Author: C. Ganesan

Mobile: 9841168917, 8939331876 To buy the book visit

www.hariganesh.com/textbook

----All the Best ----

Sri Hariganesh Publications (Ph: 9841168917, 8939331876)

Page 21