Engineering Mathematics
2016
SUBJECT NAME
: Mathematics - II
SUBJECT CODE
: MA6251
MATERIAL NAME
: University Questions
REGULATION
: R2013
UPDATED ON
: May-June 2016
TEXTBOOK FOR REFERENCE
: Sri Hariganesh Publications (Author: C. Ganesan)
To buy the book visit
www.hariganesh.com/textbook
(Scan the above QR code for the direct download of this material)
Unit – I (Vector Vector Calculus Calculus) • Simple problems on vector calculus 1.
Find the directional derivative of
i + 2 j + 2k . 2.
If
φ = 2xy + z 2 at the point ( 1, −1, 3 ) in the direction of (Textbook Page No.: 1.6)
∇φ = 2 xyz 3 i + x 2 z 3 j + 3 x 2 yz 2 k find φ ( x , y , z ) given that φ (1, −2, 2) = 4 .
Textbook Page No.: 1.1 16
3.
(M/J 2016)
(
Prove that F = 6 xy + z
) i + ( 3x
3
the scalar potential such that F
4.
(
Show that F = y + 2 xz 2
2
(
Show that F = 2 xy − z
2
find its scalar potential.
6.
(
Show that F = x + xy 2
2
= ∇ϕ .
− z ) j + ( 3 xz 2 − y ) k is irrotational vector and find (Textbook Page No.: 1.32) 2
(Textbook Page No.: 1.28)
)i +(x
2
)i +( y
2
(M/J 2012)
+ 2 yz ) j + ( y 2 − 2 zx ) k is irrotational and
(Textbook Page No.: 1.50) 2
(M/J 2010)
) i + ( 2 xy − z ) j + ( 2 x z − y + 2 z ) k is irrotational and
hence find its scalar alar potential.
5.
(M/J 2009)
(N/D 2012)
+ x 2 y ) j is irrotational and find its scalar potential.
Textbook ook Page No.: 1.50
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2013)
Page 1
Engineering Mathematics 7.
(
(Textbook Page No.: 1.34)
Find the angle between the normals to the surface
( 4,1, −1) . 9.
)
2 2 Prove that F = x − y + x iˆ − ( 2 xy + y ) ˆj is irrotational and hence find its scalar
potential.
8.
2016
xy 3 z 2 = 4 at the points ( −1, −1, 2 ) and
(Textbook Page No.: 1.10)
Find the angle between the normals to the surface
( −3, −3, 3 ) .
(N/D 2014)
(M/J 2009)
xy = z 2 at the points ( 1, 4, 2 ) and
(Textbook Page No.: 1.18)
(A/M 2011)
10. Find the angle between the normals to the surface x 2 = yz at the points ( 1,1,1) and
( 2, 4,1) .
(Textbook Page No.: 1.11)
(N/D 2014)
11. Find a and b so that the surfaces ax 3 − by 2 z − (a + 3) x 2 = 0 and 4 x 2 y − z 3 − 11 = 0 cut orthogonally at the point
( 2, −1, −3 ) .
(N/D 2013),(M/J 2016)
Textbook Page No.: 1.13
12. Find the value of n such that the vector r n r is both solenoidal and irrotational. Textbook Page No.: 1.44
(M/J 2014)
13. Find the work done in moving a particle in the force field given by
F = 3 x 2 i + (2 xz − y ) j + zk along the straight line from ( 0, 0, 0 ) to ( 2,1, 3 ) . Textbook Page No.: 1.55
(M/J 2012)
2 n n− 2 14. If r is the position vector of the point ( x , y , z ) , Prove that ∇ r = n( n + 1)r . Hence find
the value of
1 ∇2 . r
(Textbook Page No.: 1.45)
(N/D 2010),(M/J 2015)
15. Determine f ( r ) , where r = xi + yj + zk , if f ( r )r is solenoidal and irrotational. Textbook Page No.: 1.42
16. Prove that Curl Curl F = grad div F − ∇ 2 F . 17. Evaluate
∫(x
2
(N/D 2011) (M/J 2016)
+ xy ) dx + ( x 2 + y 2 ) dy where C is the square bounded by the
C
lines x = 0, x = 1, y = 0 and y = 1 .
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2009),(N/D 2011)
Page 2
Engineering Mathematics
2016
Textbook Page No.: 1.56
18. Evaluate
∫∫ F i n ds where F = 2 xyi + yz
2
j + xzk and S is the surface of the
s
parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1 and z
= 3.
(M/J 2011)
Textbook Page No.: 1.60
• Green’s Theorem 1.
(
Verify Green’s theorem for V = x + y 2
2
) i − 2 xyj taken around the rectangle bounded by
the lines x = ± a , y = 0 and y = b .
(N/D 2012),(Jan 2016)
Textbook Page No.: 1.75
2.
Using Green’s theorem in a plane evaluate
∫ x (1 + y ) dx + ( x 2
3
+ y 3 ) dy where C is
C
the square formed by x = ±1 and y = ±1 .
3.
Verify Green’s theorem in a plane for
∫ ( 3 x
(M/J 2016) 2
− 8 y 2 ) dx + ( 4 y − 6 xy ) dy , Where C is the
C
boundary of the region defined by the lines x = 0, y = 0 and x + y = 1 . Textbook Page No.: 1.86
4.
(N/D 2010),(A/M 2011),(M/J 2011), (M/J 2012)
Verify Green’s theorem for
∫ (3x
2
− 8 y 2 ) dx + ( 4 y − 6 xy ) dy where C is the boundary of
C
the region defined by x
= y2 , y = x2 .
(M/J 2010)
Textbook Page No.: 1.79
5.
Using Green’s theorem, evaluate
∫ ( 3 x
2
− 8 y 2 ) dx + ( 4 y − 6 xy ) dy , Where C is the
C
boundary of the triangle formed by the lines x = 0, y = 0 and x + y = 1 . (N/D 2014) Textbook Page No.: 1.148
6.
Using Green’s theorem, evaluate
∫ ( y − sin x ) dx + cos x dy where C is the triangle formed C
by
y = 0, x =
π 2
, y=
2x
π
.
(Textbook Page No.: 1.91)
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2015)
Page 3
Engineering Mathematics
2016
• Stoke’s Theorem 1.
(
Verify Stokes theorem for F = x − y 2
2
) i + 2 xyj
in the rectangular region of
bounded by the lines x = 0, y = 0, x = a and y = b .
z = 0 plane
(M/J 2014)
Textbook Page No.: 1.120
2.
(
Verify Stoke’s theorem for F = x + y 2
2
) i − 2 xyj taken around the rectangle formed by the
lines x = − a , x = a , y = 0 and y = b .
(N/D 2013)
Textbook Page No.: 1.124
3.
F = xyi − 2 yzj − zxk where S is the open surface of the rectangular parallelepiped formed by the planes x = 0, x = 1, y = 0, y = 2 and z = 3 Verify Stoke’s theorem for
above the XY plane.
(Textbook Page No.: 1.133)
(M/J 2009)
4.
= ( y − z )i + yzj − xzk , where S is the surface bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 1, z = 1 and C is the square boundary (Textbook Page No.: 1.150) (N/D 2011) on the xoy -plane.
5.
Verify Stoke’s theorem when F = 2 xy − x
Verify Stoke’s thorem for the vector F
(
region enclosed by the parabolas
2
)i −(x
2
)
− y 2 j and C is the boundary of the
y 2 = x and x 2 = y .
(N/D 2009)
Textbook Page No.: 1.128
6.
Verify Stoke’s theorem for the vector field
F = (2 x − y )i − yz 2 j − y 2 zk over the upper half
surface x + y + z = 1 , bounded by its projection on the xy -plane. Textbook Page No.: 1.132 2
7.
Evaluate
2
2
(M/J 2013)
∫ ( sin zdx − cos xdy + sin ydz ) by using Stoke’s theorem, where C is the boundary C
of the rectangle defined by 0 ≤ x ≤ π , 0 ≤ y ≤ 1, z = 3 . Textbook Page No.: 1.139
8.
Using Stokes theorem, evaluate
∫ F idr , where F = y i + x 2
C
boundary of the triangle with vertices at
9.
(N/D 2009)
2
j − ( x + z )k and ‘C’ is the
( 0, 0, 0 ) , ( 1, 0, 0) , ( 1,1, 0) .
Textbook Page No.: 1.140 Using Stoke’s theorem prove that curl grand Textbook Page No.: 1.143
φ = 0.
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2012)
(M/J 2011)
Page 4
Engineering Mathematics
2016
• Gauss Divergence Theorem 1.
F = x 2 i + y 2 j + z 2 k where S is the surface of the cuboid formed by the planes x = 0, x = a , y = 0, y = b , z = 0 and z = c . (M/J 2009)
Verify Gauss divergence theorem for
Textbook Page No.: 1.101
2.
F = x 2 i + y 2 j + z 2 k taken over the cube bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 1 and z = 1 . (M/J 2014)
Verify Gauss divergence theorem for
Textbook Page No.: 1.149
3.
F = 4 xzi − y 2 j + yzk over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 .
Verify Gauss Divergence theorem for
(N/D 2010),(A/M 2011),(N/D 2012),(N/D 2013),(N/D 2014),(M/J 2015) Textbook Page No.: 1.93
4.
(
)
Verify Gauss – divergence theorem for the vector function f = x − yz i − 2 x yj + 2k 3
2
over the cube bounded by x = 0, y = 0, z = 0 and x = a , y = a , z = a . Textbook Page No.: 1.196
5.
(M/J 2010),(N/D 2011)
Verify divergence theorem for F = x i + zj + yzk over the cube formed by the planes 2
x = ± 1, y = ± 1, z = ± 1 . 6.
7.
(Textbook Page No.: 1.109)
(
) (
) (
(M/J 2013)
)
Verify Gauss’s theorem for F = x − yz i + y − zx j + z − xy k over the 2
2
2
rectangular parallelepiped bounded by x = 0, x = a , y = 0, y = b , z = 0 and
z = c.
Textbook Page No.: 1.104
(Jan 2016)
(
) (
) (
)
Verify Gauss’s theorem for F = x − yz i + y − zx j + z − xy k over the 2
2
rectangular parallelepiped formed by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and
2
0 ≤ z ≤ 1.
Textbook Page No.: 1.149
(N/D 2011)
Unit – II (Ordinary Differential Equation) • ODE with Constant Coefficients 1.
Solve the equation
(D
2
− 3 D + 2 ) y = 2cos ( 2 x + 3 ) + 2e x .
(N/D 2009)
Textbook Page No.: 2.24
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 5
Engineering Mathematics
(
2
(
2
)
2016
2.
Solve D + 16 y = cos x .
3.
Solve D − 4 D + 3 y = cos 2 x + 2 x .
4.
Solve : D + 3 D + 2 y = sin x + x . (Textbook Page No.: 2.35)
5.
Solve the equation
(
3
(Textbook Page No.: 2.29)
)
2
)
2
(N/D 2010)
(D
2
(M/J 2014)
2
+ 5 D + 4 ) y = e − x sin 2 x .
(M/J 2011) (A/M 2011),(ND 2012)
Textbook Page No.: 2.41
(
)
−x
6.
Solve the equation D + 4 D + 3 y = e − sin x .
7.
Solve D − 4 D + 3 y = e cos 2 x .
8.
Solve D + 4 D + 3 y = 6e −
(
2
(
2
2
)
x
)
−2 x
(M/J 2010)
(Textbook Page No.: 2.56)
(M/J 2012)
sin x sin 2 x .
(N/D 2011)
+ sin 2 x . (Textbook Page No.: 2.56)
(M/J 2015)
Textbook Page No.: 2.44
(
2
(
2
(
3
)
9.
Solve D − 3 D + 2 y = xe
10.
Solve D + 2 D + 5 y = e − x .
11.
Solve D + 2 D + D y = e − + cos 2 x .
(Jan 2016)
12.
Solve
d2 y dy − 2 + y = 8 xe x sin x . 2 dx dx
(N/D 2013)
13.
Solve
(D
14.
Solve the equation
2
)
3x
−x
)
2
2
(N/D 2014)
−x
(Text Book Page No.: 2.53)
+ 2 D + 1) y = xe − x cos x .
(D
2
(M/J 2016)
+ 4 ) y = x 2 cos 2 x .
(M/J 2009),(N/D 2011)
Textbook Page No.: 2.51
• Method of Variation of Parameters 1.
Solve
d2 y + a 2 y = tan ax by method of variation of parameters. dx 2
Textbook Page No.: 2.110 2.
(M/J 2009),(M/J 2011),(M/J 2014)
Solve y ′′ + y = tan x using the method of variation of parameters.
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2016)
Page 6
Engineering Mathematics 3.
Solve
2016
d2y + 4 y = tan 2 x by method of variation of parameters. dx 2
(N/D 2013),(N/D 2014)
Textbook Page No.: 2.129 4.
(
)
Apply method of variation of parameters to solve D + 4 y = cot 2 x . 2
Textbook Page No.: 2.112 5.
(
Solve D + a 2
2
(N/D 2009),(N/D 2011)
) y = sec ax using the method of variation of parameters.
(M/J 2012)
Textbook Page No.: 2.114
6.
Solve
d2 y + y = cos ecx by the method of variation of parameters. dx 2
Textbook Page No.: 2.116 7.
(
(A/M 2011),(ND 2012)
)
Solve D + 1 y = x sin x by the method of variation of parameters. 2
(M/J 2010)
Textbook Page No.: 2.122 8.
(
)
−x
Using variation of parameters, solve 2 D − D − 3 y = 25e − . 2
(N/D 2011)
Textbook Page No.: 2.118
9.
Solve
d2 y dy e− x + 2 + y = by the method of variation of parameters. dx 2 dx x2
(M/J 2013)
Textbook Page No.: 2.120 10.
Solve, by the method of variation of parameters,
y′′ − 2 y′ + y = e x log x .(M/J 2015)
Textbook Page No.: 2.127
• Cauchy and Legendre Equations 1.
Solve
x2
d2y dy 1 + 4x + 2 y = x2 + 2 . 2 dx dx x
(M/J 2013)
Textbook Page No.: 2.62
(x
2
D 2 − xD + 1 ) y = sin ( log x ) .
2.
Solve
3.
Solve the equation
(x D 2
2
+ 3 xD + 5 ) y = x cos ( log x ) .
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2014) (M/J 2009)
Page 7
Engineering Mathematics
2016
Textbook Page No.: 2.93 4.
Solve
(x D 2
2
− 3 xD + 4 ) y = x 2 cos ( log x ) .
(N/D 2010)
Textbook Page No.: 2.75 5.
Solve
(x D 2
2
− xD + 4 ) y = x 2 sin ( log x ) .
(M/J 2012),(N/D 2009)
Textbook Page No.: 2.73
(x D 2
2
− xD − 2 ) y = x 2 log x .
6.
Solve
7.
Solve x D − 2 xD − 4 y = x + 2 log x .
(
2
)
2
2
(M/J 2016) (M/J 2010)
Textbook Page No.: 2.68 8.
Solve
(x D 2
2
− xD + 1 ) y = log x + π .
(M/J 2015)
Textbook Page No.: 2.93 2
9.
log x Solve ( x D − xD + 1) y = . x
10.
Solve the equation
2
2
d 2 y 1 dy 12 log x + . = dx 2 x dx x2
(M/J 2014)
(N/D 2012)
Textbook Page No.: 2.79
11.
Solve
x2
d2 y dy − 3x + 4 y = x 2 ln x . 2 dx dx
(N/D 2011)
Textbook Page No.: 2.93
d2y dy 12. Solve: (1 + x ) + (1 + x ) + y = 4cos [ log(1 + x )] . 2 dx dx 2
(N/D 2011)
Textbook Page No.: 2.91
d2y dy 13. Solve (1 + x ) + (1 + x ) + y = 2sin [ log(1 + x )] . 2 dx dx 2
(A/M 2011)
Textbook Page No.: 2.93
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 8
Engineering Mathematics 14.
Solve
( 3 x + 2)
2
d2y dy + 3 ( 3 x + 2 ) − 36 y = 3 x 2 + 4 x + 1 . 2 dx dx
2016
(M/J 2013)
Textbook Page No.: 2.88 15.
Solve
( 2 x + 7)
2
y′′ − 6 ( 2 x + 7 ) y′ + 8 y = 8 x .
(Jan 2016)
• Simultaneous Differential Equations 1.
Solve
dx dy + 2 y = sin2t , −2x = cos2t . dt dt
(M/J 2012),(N/D 2009)
Textbook Page No.: 2.94
2.
Solve
dx dy + 2 y = − sin t , − 2 x = cos t . dt dt
(M/J 2014)
Textbook Page No.: 2.96
3.
Solve
dx dy + 2 y = − sin t , −2x = cost given x = 1 , y = 0 at t = 0 . dt dt
(N/D 2010)
Textbook Page No.: 2.96
4.
Solve
dx dy − y = t and + x = t2. dt dt
(A/M 2011),(M/J 2016)
Textbook Page No.: 2.98
5.
Solve
dx dy − y = t and + x = t 2 given x (0) = y (0) = 2 . dt dt
(N/D 2011)
Textbook Page No.: 2.98
6.
Solve
dx dy + y = et , x − =t. dt dt
(N/D 2012),(N/D 2014)
Textbook Page No.: 2.100
7.
Solve
dx dy + 2 x + 3 y = 2e 2 t , + 3 x + 2 y = 0. dt dt
(M/J 2010)
Textbook Page No.: 2.108
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 9
Engineering Mathematics 8.
Solve
2016
dx dy + 5x − 2 y = t, + 2 x + y = 0. dt dt
(M/J 2013)
Textbook Page No.: 2.108
9.
Solve
dy dx + 2 x − 3 y = t and − 3 x + 2 y = e 2t . dt dt
(N/D 2011)
Textbook Page No.: 2.102
10. Solve
dx dy + y = sin t , x + = cos t given x = 2 and y = 0 at t = 0 . dt dt
(M/J 2009)
Textbook Page No.: 2.108
11. Solve
dx dy + 4 x + 3 y = t and + 2 x + 5 y = e 2t . dt dt
(N/D 2013)
Textbook Page No.: 2.108
12. Solve the simultaneous differential equations:
dx dy dx + + 3 x = sin t , + y − x = cos t . dt dt dt
Textbook Page No.: 2.106
(M/J 2015)
13. Solve y′′ = x , x′′ = y .
(Jan 2016)
Unit – III (Laplace Transform) • Laplace Transform of Periodic Function 1.
for 0 < t < a t, , f ( t + 2a ) = f ( t ) . 2a − t , for a < t < 2a
Find the Laplace transform of f ( t ) = Textbook Page No.: 3.54
2.
(M/J 2009),(N/D 2009),(A/M 2011),(N/D 2014),(M/J 2015)
Find the Laplace transform of the following triangular wave function given by
0≤ t ≤π t, and f ( t + 2π ) = f ( t ) . f (t ) = 2π − t , π ≤ t ≤ 2π
(M/J 2010),(M/J 2012)
Textbook Page No.: 3.56
3.
t, 0 < t < 1 and f ( t + 2) = f ( t ) for t > 0 . 0, 1 < t < 2
Find the Laplace transform of f ( t ) =
Textbook Page No.: 3.53
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2011)(AUT)
Page 10
Engineering Mathematics 4.
2016
Find the Laplace transform of square wave function defined by
1, in 0 < t < a with period 2a . f (t ) = −1, in a < t < 2a
(N/D 2009)
Textbook Page No.: 3.56 5.
Find the Laplace transform of square wave function (or Meoander function) of period
a 1, in 0 < t < 2 a as f ( t ) = . − 1, in a < t < a 2
(M/J 2013)
Textbook Page No.: 3.49 6.
Find the Laplace transform of
f (t ) = E ,
0≤t ≤a
= − E , a ≤ t ≤ 2a
and f ( t + 2a ) = f ( t ) for all t .
(N/D 2010)
Textbook Page No.: 3.48 7.
Find the Laplace transform of a square wave function given by
a E for 0 ≤ t ≤ 2 , and f ( t + a ) = f ( t ) . f (t ) = − E for a ≤ t ≤ a 2
(N/D 2011),(M/J 2016)
Textbook Page No.: 3.56
8.
sin ω t , 0 < t < π / ω π / ω < t < 2π / ω 0,
Find the Laplace transform of the Half wave rectifier f ( t ) = and f ( t + 2π / ω ) = f ( t ) for all t . Textbook Page No.: 3.51
(N/D 2012),(M/J 2014)
• Simple Problems and Initial & Final Value Theorem
(
−t
)
e − t − cos t L . t
1.
Find L e − sin 3t
2.
Find the Laplace transform of e − t cos t .
2
and
−t
(Jan 2016)
(N/D 2014)
Textbook Page No.: 3.21
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 11
Engineering Mathematics 3.
2016 −2 t
Find the Laplace transform of te − cos 3 t .
(M/J 2009)
Textbook Page No.: 3.24 4.
Find the Laplace transform of
f ( t ) = te −3 t cos 2t .
(M/J 2014)
Textbook Page No.: 3.22 2 −3 t
5.
Find L t e − sin 2t .
6.
Find L t e − cos t .
7.
Verify initial and final value theorems for
(Text Book Page No.: 3.23)
2 −t
(M/J 2016)
f (t ) = 1 + e − t (sin t + cos t ) .
Textbook Page No.: 3.43
8.
(M/J 2013)
Find
(M/J 2010),(N/D 2010),(M/J 2012)
cos at − cos bt L . t
(A/M 2011),(N/D 2012),(M/J 2015)
Textbook Page No.: 3.26
9.
Find the Laplace transform of
1 − cos t . t
(Textbook Page No.: 3.18)
(N/D 2014)
10.
Find the Laplace transform of
e at − e − bt . (Textbook Page No.: 3.25) t
(M/J 2012)
11.
Find the Laplace transform of e −
t
−4 t
∫ t sin 3t dt .
(M/J 2009)
0
Textbook Page No.: 3.32 ∞
12.
Evaluate
∫ te
−2 t
cos t dt using Laplace transforms.
(N/D 2011),(M/J 2012)
0
Textbook Page No.: 3.34
13.
Find the inverse Laplace transform of
1
( s + 1) ( s 2 + 4 )
.
(M/J 2009)
Textbook Page No.: 3.71
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 12
Engineering Mathematics
2016
s L−1 2 . 2 ( s + 1) ( s + 4 )
14.
Find
(Textbook Page No.: 3.73)
15.
Find the inverse Laplace transform of
s+1 log . s −1
(M/J 2015)
(N/D 2013)
Textbook Page No.: 3.90
1 s 2 + a 2 16. Find L ln 2 . 2 s s + b −1
(N/D 2011)
3 s 2 + 16 s + 26 . 2 s(s + 4 s + 13)
17. Evaluate L−1
18. Evaluate L−1 e −2 s
1
( s 2 + s + 1)
2
(N/D 2013)
.
(M/J 2016)
• Inverse Laplace Transform Using Convolution Theorem 1.
. ( s + a ) ( s + b )
Using Convolution theorem L− 1
1
(A/M 2011)
Textbook Page No.: 3.101
2.
s Apply convolution theorem to evaluate L− 1 2 s + a2
(
)
2
.
(M/J 2010),(M/J 2012)
Textbook Page No.: 3.105
3.
s2 Find L− 1 s2 + 4
(
)
2
using convolution theorem.
(N/D 2012)
Textbook Page No.: 3.106
4.
Find the inverse Laplace transform of Textbook Page No.: 3.108
(s
s2
2
+ a 2 ) ( s 2 + b2 )
using convolution theorem.
(N/D 2010),(M/J 2011),(M/J 2014),(N/D 2014),(M/J 2016)
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 13
Engineering Mathematics 5.
2016
Using convolution theorem find the inverse Laplace transform of Textbook Page No.: 3.103
6.
Find
(s
1
2
+ 1) ( s + 1)
.
(N/D 2009),(N/D 2011)(AUT)
1 L−1 using convolution theorem. 2 s ( s + 4 )
(N/D 2011)
Textbook Page No.: 3.102
7.
Using convolution theorem find the inverse Laplace transform of
(s
Textbook Page No.: 3.111
4
2
+ 2s + 5)
2
.
(M/J 2013)
• Solving Differential Equation By Laplace Transform 1.
d2x dx dx Solve − 3 + 2 x = 2 , given x = 0 and = 5 for t = 0 using Laplace transform 2 dt dt dt method.
2.
(Textbook Page No.: 3.119)
Solve the equation y ′′ + 9 y = cos 2 t , y (0) = 1 and
π y = −1 using Laplace transform. 2
Textbook Page No.: 3.138
3.
Using Laplace transform, solve
(M/J 2009)
d2 y + 4 y = sin 2t given y (0) = 3, y ′(0) = 4 . dt 2
Textbook Page No.: 3.130
4.
Solve the differential equation
(M/J 2014)
d2 y + y = sin 2t ; y (0) = 0, y ′(0) = 0 by using Laplace dt 2
transform method. 5.
(Textbook Page No.: 3.128)
Using Laplace transform solve the differential equation
y (0) = 1 = y ′(0) . 6.
Solve the differential equation
(N/D 2009)
y′′ − 3 y′ − 4 y = 2e − t with
(Textbook Page No.: 3.123)
(M/J 2010),(N/D 2010)
d2 y dy − 3 + 2 y = e − t with y(0) = 1 and y′(0) = 0 , 2 dt dt
using Laplace transform. 7.
(A/M 2011),(N/D 2012)
(Textbook Page No.: 3.151)
(
)
Use Laplace transform to solve D − 3 D + 2 y = e 2
3t
(M/J 2012)
with y (0) = 1 and y ′(0) = 0 .
Textbook Page No.: 3.121
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2014)
Page 14
Engineering Mathematics 8.
9.
Solve
2016
y′′ − 3 y′ + 2 y = 4e 2 t , y(0) = −3, y′(0) = 5 , using Laplace transform.
Textbook Page No.: 3.126
(N/D 2011)
Solve y ′′ + 5 y ′ + 6 y = 2, y (0) = 0, y ′(0) = 0 , using Laplace transform.
(M/J 2013)
Textbook Page No.: 3.117
10.
Solve, by Laplace transform method, the equation
y (0) = 0, y ′(0) = 1 .
d2 y dy + 2 + 5 y = e − t sin t , 2 dt dt
(Textbook Page No.: 3.136)
(M/J 2011),(Jan 2016)
d2y dy dy 11. Solve + 4 + 4 y = sin t , if = 0 and y = 2 when t = 0 using Laplace transforms. 2 dt dt dt Textbook Page No.: 3.133 12.
(N/D 2011)
y′′ + y′ = t 2 + 2t , y(0) = 4, y′(0) = −2 .
Using Laplace transforms, solve Textbook Page No.: 3.141
13.
Solve the differential equation
(N/D 2013),(M/J 2016)
y′′ − 3 y′ + 2 y = 4t + e , where y (0) = 1, y ′(0) = −1 using
Laplace transforms.
3t
(Textbook Page No.: 3.142)
(M/J 2015)
Unit – IV (Analytic Function) • Harmonic Function & Analytic Function 1.
Prove that the real and imaginary parts of an analytic function are harmonic functions. Textbook Page No.: 4.23 (M/J 2014)
2.
Verify that the families of curves
u = c1 and v = c2 cut orthogonally, when u + iv = z 3 .
Textbook Page No.: 4.30 3.
Prove that u = e
−y
cos x and v = e
an analytic function of z . 4.
Show that
u=
(Textbook Page No.: 4.31)
(M/J 2011)
(Textbook Page No.: 4.24)
(N/D 2009)
1 log ( x 2 + y 2 ) is harmonic. Determine its analytic function. Find also its 2
conjugate. 6.
sin y satisfy Laplace equations, but that u + iv is not
When the function f ( z ) = u + iv is analytic, prove that the curves u = constant and
v = constant are orthogonal. 5.
(N/D 2009) −x
(Textbook Page No.: 4.43) −2 xy
Prove that u = e −
the imaginary part.
(A/M 2011)
sin ( x 2 − y 2 ) is harmonic. Find the corresponding analytic function and (Textbook Page No.: 4.58)
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2013),(Jan 2016)
Page 15
Engineering Mathematics 7.
Prove that
2016
u = x 2 − y 2 and v =
−y are harmonic but u + iv is not regular. x + y2 2
Textbook Page No.: 4.33
8.
Prove that
(N/D 2010)
u = x 2 − y 2 and v =
conjugates. 9.
−y are harmonic functions but not harmonic x + y2 2
(Textbook Page No.: 4.33)
(N/D 2014),(Jan 2016)
Prove that every analytic function w = u + iv can be expressed as a function z alone, not as a function of z . (Textbook Page No.: 4.19) (M/J 2010),(M/J 2012)
w=
z z where a ≠ 0 is analytic whereas w = is not analytic.(M/J 2016) z+a z +a
10.
Prove that
11.
Find the analytic function f ( z ) = P + iQ , if
P −Q =
sin 2 x . (M/J 2009) cosh 2 y − cos 2 x
Textbook Page No.: 4.54
12.
Determine the analytic function whose real part is
sin 2 x . cosh 2 y − cos 2 x
Textbook Page No.: 4.49
13.
(N/D 2012),(N/D 2014)
If w = f ( z ) is analytic, prove that
dw ∂w ∂w . = −i = dz ∂x ∂y
(A/M 2011)
Textbook Page No.: 4.36 14.
(
Find the analytic function u + iv , if u = ( x − y ) x + 4 xy + y harmonic function v .
15.
2
2
) . Also find the conjugate
(Textbook Page No.: 4.41)
Determine the analytic function
w = u + iv if u = e 2 x ( x cos 2 y − y sin 2 y ) .
Textbook Page No.: 4.46 16.
Find the analytic function
(M/J 2015)
w = u + iv when v = e −2 y ( y cos 2 x + x sin 2 x ) and find u .
Textbook Page No.: 4.58 17.
Show that
Prove that
(N/D 2011)
v = e − x ( x cos y + y sin y ) is harmonic function. Hence find the analytic function
f ( z ) = u + iv . 18.
(N/D 2009)
(Textbook Page No.: 4.47)
(M/J 2014)
u = e x ( x cos y − y sin y ) is harmonic (satisfies Laplace’s equation) and hence find
the analytic function f ( z ) = u + iv .
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(N/D 2010),(M/J 2013)
Page 16
Engineering Mathematics
2016
Textbook Page No.: 4.48
19.
If f ( z ) is a analytic function of Textbook Page No.: 4.27
∂2 ∂2 2 2 z , prove that 2 + 2 f ( z ) = 4 f ′( z ) . ∂y ∂x (M/J 2009), (A/M 2011),(M/J 2013),(N/D 2014),(M/J 2016)
∂2 ∂2 20. If f ( z ) is an analytic function of z , prove that + 2 log f ( z ) = 0 . (M/J 2012) 2 ∂y ∂x Textbook Page No.: 4.28 21.
If f ( z ) is analytic function of
z
in any domain, prove that
∂2 ∂2 p 2 p− 2 2 2 + 2 f ( z ) = p f ′( z ) f ( z ) . ∂y ∂x
(N/D 2011)(AUT)
Textbook Page No.: 4.29
• Conformal Mapping 1.
Find the image of the half plane
x > c , when c > 0 under the transformation w =
Show the regions graphically.
1 . z
(M/J 2009),(N/D 2012)
Textbook Page No.: 4.64
2.
Find the image of
1 z + 1 = 1 under the mapping w = . z
(M/J 2014)
Textbook Page No.: 4.65
3.
Find the image of the circle
1 z − 1 = 1 under the mapping w = . z
(N/D 2009)
1 z − 2i = 2 under the transformation w = . z
(M/J 2013)
Textbook Page No.: 4.80
4.
Find the image of the circle
Textbook Page No.: 4.67
5.
Find the image in the
1 w= . z
w -plane of the infinite strip
1 1 ≤ y ≤ under the transformation 4 2
(Textbook Page No.: 4.69)
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2015)
Page 17
Engineering Mathematics 6.
2016
Find the image of the hyperbola
1 x 2 − y 2 = 1 under the transformation w = . z
Textbook Page No.: 4.71 7.
(M/J 2010),(M/J 2012),(N/D 2012)
Find the image of z = 2 under the mapping (1)
w = z + 3 + 2i (2) w = 3 z .
Textbook Page No.: 4.63
8.
(A/M 2011)
Prove that the transformation w of
w - plane.
z maps the upper half of z - plane on to the upper half 1− z
=
z = 1 under this transformation?
What is the image of
Textbook Page No.: 4.72
9.
Prove that the transformation
(M/J 2010),(N/D 2012),(N/D 2013)
w=
of circles or straight lines.
10.
1 maps the family of circles and straight lines into the family z
(Textbook Page No.: 4.74)
Show that the transformation w
=
(N/D 2011)
1 transforms, in general, circles and straight lines into circles z
and straight lines that are transformed into straight lines and circles respectively. Textbook Page No.: 4.80 (N/D 2011)
• Bilinear Transformation 1.
Find the bilinear transformation which maps the points z = 0, − i , − 1 into w – plane
w = i ,1, 0 respectively. 2.
(Textbook Page No.: 4.86)
Find the bilinear transformation that transforms the points z = 1, i , − 1 of the z-plane into the points w = 2, i , − 2 of the w-plane.
3.
(M/J 2009)
(Textbook Page No.: 4.87)
(M/J 2016)
Find the bilinear transformation which maps the points z = 0,1, ∞ into
w = i ,1, − i respectively.
(M/J 2010),(M/J 2012),(M/J 2013)
Textbook Page No.: 4.88
4.
Find the bilinear transformation that maps the points z = ∞ , i , 0 onto w = 0, i , ∞ respectively. Textbook Page No.: 4.89
5.
(N/D 2012)
Find the bilinear map which maps the points z = 0, −1, i onto points w = i , 0, ∞ . Also find the image of the unit circle of the
z
plane.
(N/D 2013),(M/J 2015)
Textbook Page No.: 4.90
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 18
Engineering Mathematics 6.
Find the bilinear transformation that transforms 1, i and −1 of the z – plane onto 0, 1 and
∞ of the w – plane. 7.
2016
(Textbook Page No.: 4.99)
(M/J 2014)
Find the bilinear transformation that transforms 1, i and −1 of the z – plane onto 0, 1 and
∞ of the w – plane. Also show that the transformation maps interior of z – plane on to upper half of the w – plane.
the unit circle of the (N/D 2010)
Textbook Page No.: 4.92
8.
Find the bilinear transformation which maps the points z = 1, i , −1 into the points
w = i , 0, − i . Hence find the image of z < 1 .
(M/J 2011),(N/D 2014)
Textbook Page No.: 4.95
9.
Find the Bilinear transformation that maps the points 1 + i , − i , 2 − i of the points 0,1, i of the
w - plane.
(Textbook Page No.: 4.97)
z - plane
into the
(N/D 2011)
Unit – V (Complex Integration) • Cauchy Integral Formula and Cauchy Residue Theorem 1.
Using Cauchy’s integral formula, evaluate
4 − 3z
∫ z( z − 1)( z − 2) dz , Where ‘ C ’ is the C
circle
2.
z =
3 . 2
(Textbook Page No.: 5.13)
sin π z 2 + cos π z 2 Evaluate ∫ dz , where C is z = 3 . ( z − 1)( z − 2) C
(M/J 2010)
(N/D 2011),(M/J 2013)
Textbook Page No.: 5.12
3.
Using Cauchy’s integral formula evaluate
∫z c
2
z dz , where C is the circle z + i = 1 . +1
Textbook Page No.: 5.15
4.
Evaluate using Cauchy’s integral formula
(M/J 2011)
z +1
∫ ( z − 3 ) ( z − 1) dz where C
is the circle
z = 2.
C
Textbook Page No.: 5.34
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2016)
Page 19
Engineering Mathematics 5.
Evaluate
∫z
2
c
2016
z+4 dz , where C is the circle z + 1 + i = 2 , using Cauchy’s integral + 2z + 5
formula.
(N/D 2010),(N/D 2011),(N/D 2012)
Textbook Page No.: 5.16
6.
Evaluate
∫z
2
c
z +1 dz , where C is the circle z + 1 + i = 2 , using Cauchy’s integral + 2z + 4
formula.
7.
Evaluate
(Textbook Page No.: 5.34)
z2 ∫C ( z − 1)2 ( z + 2) dz where C
is
(N/D 2014)
z = 3.
(M/J 2015)
Textbook Page No.: 5.27
8.
Evaluate
z −1 ∫C ( z + 1)2 ( z − 2) dz , where C is the circle z − i = 2 using Cauchy’s
residue theorem.
9.
(Textbook Page No.: 5.91)
Using Cauchy’s residue theorem evaluate
(M/J 2012)
z −1
∫ ( z − 1) ( z − 2) dz , where C is 2
z − i = 2.
C
Textbook Page No.: 5.94
10.
Evaluate
(M/J 2014)
zdz
∫ ( z − 1) ( z − 2 )
2
where
c is the circle z − 2 =
c
Textbook Page No.: 5.24
11.
Using Cauchy’s integral formula evaluate
1 using Cauchy’s integral formula. 2 (M/J 2009),(N/D 2009),(M/J 2012)
e 2z
∫ ( z + 1)
4
dz where C is z = 2 . (Jan 2016)
C
12.
Evaluate
∫ (z C
2
z +1 dz where C is z + 1 + i = 2 using Cauchy’s integral formula. + 2 z + 4)2
Textbook Page No.: 5.29
13.
Evaluate
(A/M 2011),(N/D 2013)
z 3 dz ∫C ( z − 1)4 ( z − 2)( z − 3) where C is z = 2.5 , using residue theorem.(Jan 2016)
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 20
Engineering Mathematics
2016
• Contour Integral of Types – I ,II &III 2π
1.
Evaluate
dθ
∫ 2 + cos θ
using contour integration.
(Textbook Page No.: 5.96)
0
(N/D 2009), (M/J 2010), (N/D 2010) ,(A/M 2011) 2π
2.
Evaluate
dθ
∫ 13 + 5 cos θ
using contour integration.
(N/D 2014)
0
Textbook Page No.: 5.155 2π
3.
Evaluate
dθ
∫ 13 + 12cos θ
using contour integration.
(M/J 2016)
0
2π
4.
Evaluate
dθ
∫ 13 + 5 sin θ .
(Textbook Page No.: 5.100)
(M/J 2014)
0
2π
5.
Evaluate
dθ ∫ a + b cos θ ( a > b > 0 ) , using contour integration.
(N/D 2011)
0
Textbook Page No.: 5.105 2π
6.
Evaluate
cos 2θ
∫ 5 + 4 cos θ dθ , using contour integration.
(N/D 2013)
0
Textbook Page No.: 5.155 2π
7.
Evaluate
cos 3θ
∫ 5 − 4 cos θ dθ
using contour integration.
(M/J 2013)
0
Textbook Page No.: 5.107 2π
8.
Evaluate
∫ 0
sin 2 θ dθ , a > b > 0 . a + b cos θ
(N/D 2012)
Textbook Page No.: 5.110 2π
9.
Evaluate
dθ
∫ 1 − 2 x sin θ + x
2
,
( 0 < x < 1) .
(M/J 2009)
0
Textbook Page No.: 5.113
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 21
Engineering Mathematics
2016 2π
10.
Evaluate, by contour integration,
dθ
∫ 1 − 2a sin θ + a
2
, 0 < a < 1.
(M/J 2011)
0
Textbook Page No.: 5.113 ∞
11.
x2 − x + 2 dx Evaluate ∫ 4 x + 10 x 2 + 9 −∞
using contour integration.
Textbook Page No.: 5.127
(M/J 2010),(A/M 2011),(N/D 2013)
∞
12.
Evaluate
x 2 dx ∫−∞ ( x 2 + a 2 ) ( x 2 + b2 ) , a > b > 0 .
(M/J 2009),(M/J 2013)
Textbook Page No.: 5.124 ∞
13.
Evaluate
x 2 dx using contour integration. ∫ 2 2 −∞ ( x + 9 ) ( x + 4 )
(N/D 2014)
Textbook Page No.: 5.156 ∞
14.
Evaluate
∫ (x
−∞
2
dx using contour integration. + 1) ( x 2 + 4 )
(N/D 2010)
Textbook Page No.: 5.122 ∞
15.
Evaluate by using contour integration
∫ 0
dx
.
(M/J 2014)
dx .
(N/D 2011)
(1 + x )
2 2
Textbook Page No.: 5.130 ∞
16.
Evaluate using contour integration
∫
−∞
x2
( x 2 + 1)
2
Textbook Page No.: 5.132 ∞
17.
Evaluate
∫ 0
dx
( x2 + a2 )
3
,
a > 0 using contour integration.
(N/D 2009)
Textbook Page No.: 5.135
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 22
Engineering Mathematics ∞
18.
Evaluate
∫ 0
dx
( x2 + a2 )
2
2016
a > 0 using contour integration.
,
(M/J 2015)
Textbook Page No.: 5.156 ∞
19.
∫x
Evaluate
0
4
dx using contour integration. + a4
(Jan 2016)
Textbook Page No.: 5.156 ∞
20.
Evaluate
cos mx dx , using contour integration. 2 + a2
∫x 0
(M/J 2012)
Textbook Page No.: 5.145 ∞
21.
Evaluate
∫ 0
x sin mx dx where a > 0 , m > 0 . x2 + a2
(M/J 2016)
Textbook Page No.: 5.150 ∞
22.
∫ (x
Evaluate
−∞
cos x dx ,a > b > 0. 2 + a 2 ) ( x 2 + b2 )
(N/D 2011)
Textbook Page No.: 5.147
• Taylor’s and Laurent’s Series 1.
Expand
f (z) =
z > 3.
z2 − 1 as a Laurent’s series in the regions z < 2 , 2 < z < 3 and ( z + 2)( z + 3) (Textbook Page No.: 5.51)
(M/J 2009),(A/M 2011),(M/J 2011),(N/D 2011),(M/J 2013),(M/J 2014),(M/J 2015)
2.
Evaluate
f (z) =
1
( z + 1) ( z + 3 )
in Laurent series valid for the regions
Textbook Page No.: 5.45
3.
Expand as a Laurent’s series of the function (ii)
z > 3 and 1 < z < 3 .
(N/D 2009),(M/J 2012)
f (z) =
z in the region (i) z < 1 z − 3z + 2 2
1 < z < 2 (iii) z > 2 .
Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
(M/J 2016)
Page 23
Engineering Mathematics 4.
2016
0 < z −1 < 1.
1
f (z) =
Find the Laurent’s series expansion of
( z − 1) ( z − 2 )
valid in the regions
(Textbook Page No.: 5.48)
z > 2 and
(N/D 2014)
5.
z 2 − 4z + 2 Obtain the Laurent’s expansion of f ( z ) = 3 in 3 < z + 2 < 5 .(Jan 2016) z − 2z 2 − 5z + 6
6.
Find the Laurent’s series expansion of
1 valid in the regions z (1 − z )
f (z) =
z + 1 < 1, 1 < z + 1 < 2 and z + 1 > 2 .
(N/D 2011)
Textbook Page No.: 5.54
7.
Find the Laurent’s series of
f (z) =
7z − 2 in 1 < z + 1 < 3 . z ( z + 1)( z + 2)
(M/J 2010)
Textbook Page No.: 5.58
8.
Find the residues of f ( z ) =
z2
( z − 1) ( z + 2 ) 2
2
at its isolated singularities using Laurent’s
series expansions. Also state the valid region.
(N/D 2010),(N/D 2012)
Textbook Page No.: 5.75
9.
Find the residues of f ( z ) = expansion.
z2
( z + 2 ) ( z − 1)
2
at its isolated singularities using Laurent’s series
(Textbook Page No.: 5.72)
(N/D 2013)
Textbook for Reference: “ENGINEERING MATHEMATICS - II” Publication: Sri Hariganesh Publications
Author: C. Ganesan
Mobile: 9841168917, 8939331876 To buy the book visit
www.hariganesh.com/textbook
----All the Best---Sri Hariganesh Publications (Ph: 9841168917, 8939331876)
Page 24