Voltage-Controlled Oscillator (VCO) fosc
Desirable characteristics: • Monotonic fosc vs. VC characteristic with adequate frequency range • Well-defined Kvco
fmax
slope = Kvco
fmin
φVC φin
VD
KPD
F (s)
+
€
VC
VC
K^vco s
φout φout
€
€
€
€
€ €
K^vco = ⋅ φVC s + KPD K^vco F (s) / N
Noise coupling from VC into PLL output is directly proportional to Kvco.
÷N € EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
1
Oscillator Design
Vin ⇒ 0
A(s)
Vout
Vout A(s) ≡ HCL (s) = Vin 1+ f ⋅ A(s) loop gain
€
€
€
f
€
Barkhausen’s Criterion: If a negative-feedback loop satisfies:
( ) ∠A( jω ) = −180 f ⋅ A jω o ≥ 1
€
o
!
then the circuit will oscillate at frequency ω0.
€ EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
2
Inverters with Feedback (1) 1 inverter: V1
V2
1 inverter
V2
feedback
1 stable equilibrium point
V1 V2
2 inverters: V1
feedback
V2
3 equilibrium points: 2 stable, 1 unstable (latch)
2 inverters V1 EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
3
Inverters with Feedback (2) 3 inverters forming an oscillator: V1
V2 V2
1 unstable equilibrium point due to phase shift from 3 capacitors V1
A0 Let each inverter have transfer function Hinv ( jω ) = 1+ jω p A30 3 Loop gain: Hloop ( jω ) = [Hinv ( jω )] = 3 1+ j ω p ( ) € % ( −1 ω Applying Barkhausen’s criterion: ∠Hloop ( jω ) = −3 tan ' * = −180! ⇒ ω o = 3⋅ p
& p)
€
Hloop ( jω o ) =
€ EECS 270C / Spring 2014
A30
[1+ 3]
Prof. M. Green / U.C. Irvine
€
3
2
> 1 ⇒ A0 > 2 4
Ring Oscillator Operation tp
tp
VA
tp
VB
VA
VC
tp
VB
1 Tosc = 3t p 2 ⇒ Tosc = 6t p
tp
VC
tp
VA 1 Tosc 2 EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
5
Variable Delay Inverters (1)
Inverter with variable load capacitance: Vin
Current-starved inverter:
Vout
VC Vin
Vout
VC
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
6
Variable Delay Inverters (2) Interpolating inverter: ISS + V _C
R Vout+
R Vout-
Vin+
Vin- Vin+
VinRG
Ifast
RG Islow
• tp is varied by selecting weighted sum of fast and slow inverter. • Differential inverter operation and differential control voltage • Voltage swing maintained at ISSR independent of VC. EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
7
Differential Ring Oscillator
+ −
+ −
VA
+ −
VB
VA
VC
+ −
VD
− +
VA
additional inversion (zero-delay)
tp tp
VB VC
1 Tosc = 4t p 2 ⇒ Tosc = 8t p
tp tp
VD
Use of 4 inverters makes quadrature signals available.
VA EECS 270C / Spring 2014
€
1 Tosc 2
Prof. M. Green / U.C. Irvine
8
Resonance in Oscillation Loop H r ( jω )
€
Hr (s)
1
€ π + 2
Hr (s)
€
∠Hr ( jω )
€
ωr
€ −
At dc: € Since Hr(0) < 1, latch-up does not occur.
ωr
At resonance:
H r ( jω r ) > 1
Prof. M. Green / U.C. Irvine
€
ω
π 2
∠Hr ( jωr ) = 0 EECS 270C / Spring 2014
ω
⇒ ωo = ωr 9
€
LC VCO L Vin
Hr (s)
C
Vout
ωr = Vout
Vin
1 LC
€
€ Hr (s)
2L
⇒
€
⇒
C
C
Hr (s)
realizes negative resistance
€
€
EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
10
Variable Capacitance varactor = variable reactance Cj
A. Reverse-biased p-n junction +
VR
–
VR
B. MOSFET accumulation capacitance
Cg
p-channel
– VBG +
n diffusion in n-well accumulation region EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
inversion region
VBG 11
LC VCO Variations IS
2L C
C
C
C
2L
2L C
IS
2L
C
C
C ISS
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
12
Effect of CML Loading 1. 1. ideal capacitor load 1 nH
3.8 Ω
400 fF
400 fF
108 fF
108 fF
2. Cg = 108fF 1 nH
3.8 Ω
400 fF
400 fF
2. CML buffer load EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
13
CML Buffer Input Admittance (1) Yin = jωCgs + jωCgd A0 ⋅
1+ jω / z 1+ jω / p
A0 = 1+ gm R
€
(
)
where: 1/ p = CL + Cgd R
€
1/ z =
(note p < z)
CL R A0
€
€
€
Re Yin = A0Cgd ω 2 ⋅
( )
1 p −1 z
(
1+ ω p
)
2
Substantial parallel loss at high frequencies ⇒ weakens VCO’s tendency to oscillate
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
14
CML Buffer Input Admittance (2) Yin magnitude/phase:
Yin real part/imaginary part:
magnitude imaginary
phase real
Contributes 2kΩ additional parallel resistance
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
15
CML Buffer Input Admittance (3)
3. CML tuned buffer load
Cg = 108 fF 1 nH
imaginary
3.8 Ω
400 fF
400 fF
3.8 nH
real
Contributes negative parallel resistance
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
16
CML Buffer Input Admittance (4)
ideal capacitor load Cg = 108 fF 1 nH
400 fF
3.8 Ω
400 fF
3.8 nH
CML buffer load Loading VCO with tuned CML buffer allows negative real part at high frequencies ⇒ more robust oscillation!
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
CML tuned buffer load
17
Differential Control of LC VCO Differential VCO control is preferred to reduce VC noise coupling into PLL output.
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
18
Oscillator Type Comparison
Ring Oscillator
LC Oscillator
– slower
+ faster
– low Q ⇒ more jitter generation
+ high Q ⇒ less jitter generation
+ Control voltage can be applied differentially
– Control voltage applied single-ended
+ Easier to design; behavior more predictable
– Inductors & varactors make design more difficult and behavior less predictable
+ Less chip area
– More chip area (inductor)
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
19
Random Processes (1)
Random variable: A quantity X whose value is not exactly known. Probability distribution function PX(x): The probability that a random variable X is less than or equal to a value x.
PX(x) 1
Example 1: Random variable
X ∈ [−∞,+∞]
0.5
€ EECS 270C / Spring 2014
x Prof. M. Green / U.C. Irvine
20
Random Processes (2) Probability of X within a range is straightforward: PX(x) 1
0.5
(
)
P X ∈ [x 1, x 2 ] = P(x 2 ) − P(x 1)
x1 x2
x
€ If we let x2-x1 become very small …
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
21
Random Processes (3) Probability density function pX(x): Probability that random variable X lies within the range of x and x+dx. p X (x) ⋅ dx = PX (x + dx) − PX (x) ⇒ p X (x) =
dPX (x) dx
€ €
(
PX(x)
) ∫
P X ∈ [ x 1, x 2 ] =
€
1
x2 x1
p X (x) dx
pX(x)
0.5
dx EECS 270C / Spring 2014
x
x Prof. M. Green / U.C. Irvine
22
Random Processes (4) Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples. +∞
∫ x ⋅p
E[X ] ≡ X =
X
(x)dx
−∞
Mean square value E[X2]: Mean value of the square of a random variable X2 over a large number of samples.
€
+∞
E[X 2 ] =
∫x
2
⋅ p X (x)dx
−∞
Variance:
[
2
+∞
]
2
E (X − X ) ≡ σ =
€
∫ (x − X ) p
[
EECS 270C / Spring 2014
€
X
(x)dx
−∞
2 Standard deviation: σ = E (X − X )
€
2
]
Prof. M. Green / U.C. Irvine
23
Gaussian Function 1. Provides a good model for the probability density functions of many random phenomena. 2. Can be easily characterized mathematically σ , X . 3. Combinations of Gaussian random variables are themselves Gaussian.
(
€
)
f (x)
1
σ 2π 0.607
% −(x − X )2 ( * f (x) = exp' 2 '& 2σ *) σ 2π 1
+∞
∫ f (x)dx = 1
€
€
€
€
σ 2π
€
X −σ
−∞
EECS 270C / Spring 2014
2σ
Prof. M. Green / U.C. Irvine
€
€
€
X
X +σ
x 24
Joint Probability (1)
Consider 2 random variables:
(
P(x, y) ≡ P X ≤ x and Y ≤ y
)
If X and Y are statistically independent (i.e., uncorrelated):
€
(
)
P X ∈ [ x, x + dx ] and Y ∈ [ y, y + dy ] = p X (x) ⋅ pY (y) ⋅dx dy
€
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
25
Joint Probability (2) Consider sum of 2 random variables:
Z = X +Y
(
) ∫∫
P Z ∈ [ z0 , z0 + dz ] =
y
strip
% =' &
€
p X (x)pY (y) dx dy
( p X (x)pY (z0 − x) dx * dz −∞ )
∫
∞
€
x + y = z0 + dz €
x + y = z0 € €
p Z (z0 )
dy = dz
dx
EECS 270C / Spring 2014
determined by convolution of pX and pY.
x
€
Prof. M. Green / U.C. Irvine
26
Joint Probability (3) Example: Consider the sum of 2 non-Gaussian random processes:
*
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
27
Joint Probability (4) 3 sources combined:
*
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
28
Joint Probability (5) 4 sources combined:
*
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
29
Joint Probability (6) Noise sources
Central Limit Theorem: Superposition of random variables tends toward normality.
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
30
Fourier transform of Gaussians: p X (x) =
% 2( −(x − X ) * exp' '& 2σ 2 *) 2π X
1
σX
% 1 2 2( PX (ω ) = exp'− σ X ω * & 2 )
F
Recall:
€
& P Z ∈ [ z0 , z0 + dz ] = ( '
(
) ∫
p Z (z0 ) =
€
) € p X (x)pY (z0 − x) dx + dz −∞ *
∫
∞
−∞
∞
F
p X (x)pY (z0 − x) dx
PZ (ω ) = PX (ω ) ⋅PY (ω ) % 1 ( % 1 ( = exp'− σ 2X ω 2 * ⋅exp'− σ Y2 ω 2 * & 2 ) & 2 )
€ p Z (z) =
1
(
2 π σ 2X + σ Y2
)
% −(z − Z)2 exp' '2 σ 2 +σ 2 X Y &
(
)
( * * )
€
F -1
€
% 1 ( = exp'− (σ 2X + σ 2X )ω 2 * & 2 )
Variances of sum of random normal processes add. €
€
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
31
Autocorrelation function RX(t1,t2): Expected value of the product of 2 samples of a random variable at times t1 & t2.
RX (t1,t2 ) = E [ X (t1) ⋅ X (t2 )]
€
For a stationary random process, RX depends only on the time difference τ = t1 − t 2
RX (τ ) = E [ X (t) ⋅ X (t + τ )] for any t 2 Note RX (0) = σ
€ €
€ Power spectral density SX(ω): 2* ' +∞ ) , SX (ω ) = E) X (t) ⋅ e − jωt dt , )( −∞ ,+
∫
EECS 270C / Spring 2014
€
SX(ω) given in units of [dBm/Hz]
Prof. M. Green / U.C. Irvine
32
Relationship between spectral density & autocorrelation function:
1 RX (τ ) = 2π
∫
∞
−∞
SX (ω ) ⋅e jωτ dω
1 ⇒ RX (0) = σ = 2π
∫
2
∞
−∞
SX (ω )dω
€
€
infinite variance (non-physical)
Example 1: white noise SX (ω )
RX (τ )
€
€
τ
ω
( )
SX ω = K
€
EECS 270C / Spring 2014
RX (τ ) =
€
Prof. M. Green / U.C. Irvine
K ⋅δ t 2π
()
33
Example 2: band-limited white noise RX (τ )
SX (ω )
σ2 =
1 Kω p 2
K € €
€
€ −ω p
( )
SX ω = €
€
ωp
ω
K ω2 1+ 2 ωp
RX (τ ) = σ 2e
€
−ω p τ
τ
p X (x)
For parallel RC circuit capacitor€voltage noise: € i n2 K= ⋅R2 = 2kBTR Δf
ωp =
σ V2C =
1 RC
kBT C
−σ
€ EECS 270C / Spring 2014
€
€
Prof. M. Green / U.C. Irvine
€
+σ
x 34
€
Random Jitter (Time Domain)
Experiment: CLK
data source
EECS 270C / Spring 2014
DATA
CDR (DUT)
RCK
Prof. M. Green / U.C. Irvine
analyzer
35
Jitter Accumulation (1)
Experiment: Observe N cycles of a free-running VCO on an oscilloscope over a long measurement interval using infinite persistence.
NT Free-running oscillator output
Tosc =
1
τ4
fosc
σ1 €
τ3
τ2
τ1
σ2
trigger
EECS 270C€ / Spring 2014
€
σ3
€
Prof. M. Green€ / U.C. Irvine
σ4
Histogram plots
36
Jitter Accumulation (2)
σ τ2
€ €
τ proportional to τ
proportional to τ2
Observation: As τ increases, rms jitter increases. EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
€
37
Noise Spectral Density (Frequency Domain) Single-sideband spectral density:
Power spectral density of oscillation waveform:
( ) [dBc Hz]
Ltotal Δf
Sv(f)
[dBm Hz]
1/Δf3 region (-30dBc/Hz/decade)
€ 1/Δf2 region (-20dBc/Hz/decade)
€
fosc
fosc+Δf
" P f + Δf 1Hz osc Ltotal (Δf ) = 10 log$ $# Ptotal
(
EECS 270C / Spring 2014
Δf (log scale)
) %' '&
Ltotal(Δf) given in units of [dBc/Hz] Ltotal includes both amplitude and phase noise Prof. M. Green / U.C. Irvine
38
Noise Analysis of LC VCO (1) noise from resistor
+
C
L
R
vc
-R
_
C
L
active circuitry
ωr =
€
1 LC
Z( jω ) =
R Q= ωr L
Consider € frequencies near resonance:
[(
(
)]
Z j ωr + Δω = 1−
ωr L = €
2 r
( )
ω + 2ωr Δω + Δω
2
j ωL $ ω '2 1− & ) % ωr (
€
ωr2 ≈ jL ⋅ 2Δω
ωr2 R R ωr ⇒ Z j ωr + Δω ≈ j ⋅ Q 2Q Δω
EECS 270C / Spring 2014
€
)
j ωr + Δω L
inR
[(
ωr ωr + Δω
)]
Prof. M. Green / U.C. Irvine
€ €
39
Noise Analysis of LC VCO (2) +
vc _
Spot noise current from resistor: C
L
inR
2 i nR =
4kT ⋅ Δf R
2 v c2 = i nR ⋅| Z( jω ) |2
€
% ωr Δω (2 4kT = Δf ⋅ 'R * R 2Q ) & % ωr Δω (2 = 4kTR ⋅ ' * ⋅ Δf & 2Q )
Leeson’s formula (taken from measurements): € 2 +- % (2 /-% ω 3 (5 kT ω r L{ Δω} = 10 ⋅ log4F ⋅ ,1+ ' * 0''1+ 1/ f **7 4 Psig - & 2Q ⋅ Δω ) Δω )7 . 1& 3 6
spot noise relative to carrier power
dBc/Hz
Where F and ω1/f3 are empirical parameters. €
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
40
Oscillator Phase Disturbance ip(t)
ip(t)
Current impulse Δq/Δt
ip(t)
_
t
τ1
Vosc +
Vosc(t)
Vosc(t)
Δφ = 0
€
t
τ2
€
€
Δφ < 0
€
Vosc jumps by Δq/C
• Effect of electrical noise on oscillator phase noise is time-variant. • Current impulse results in step phase change (i.e., an integration). ⇒ current-to-phase transfer function is proportional to 1/s EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
41
Impulse Sensitivity Function (1) The phase response for a particular noise source can be determined at each point τ over the oscillation waveform. Δφ (τ ) ⋅q max Impulse sensitivity function (ISF): Γ(τ ) ≡ Δq = C ⋅Vmax
change in phase charge in impulse Example 1: sine wave
€
Example 2: square wave
€
Vosc (t) Vmax €
€
Vosc (t)
t
t
Γ(τ )
Γ(τ )
€
€
(normalized to signal amplitude)
τ
τ
Note Γ has same period as Vosc. EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
42
Impulse Sensitivity Function (2) Recall from network theory:
H(s) h(t)
i in
LaPlace transform:
φout
Φ out (s) = H(s) Iin (s) t
Impulse response: φout (t) =
∫ h(t,τ ) ⋅ i
in
(τ ) dτ
0
€
€
€ Recall: € Γ(τ ) ≡
Δφ (τ ) Γ(τ ) ⋅q max ⇒ Δφ (τ ) = ⋅ Δq Δq q max
ISF convolution integral: t Γ(τ ) φ (t) = ⋅u(t − τ ) ⋅ [i (τ ) ⋅dτ ] = € q max 0
∫
€
t
∫ qΓ(τ ) ⋅i (τ ) ⋅dτ 0
time-variant impulse response
max
Γ can be expressed in terms of Fourier coefficients: ∞
from Δq
Γ(τ ) =
= 1 for τ ∈ (0,t)
∑c
k
(
cos kωoscτ + θ k
k=0
€ € EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
€
43
)
Impulse Sensitivity Function (3) Case 1: Disturbance is sinusoidal:
[(
)]
i (t) = I0 cos mωosc + Δω t , m = 0, 1, 2, …
(Any frequency can be expressed in terms of m and Δω.)
I φ (t) = 0 q max
€
∞
t
∑ c ∫ {cos(kω k
k=0
0
osc
)
) ] } dτ
[(
τ + θ k ⋅ cos mωosc + Δω t
Γ(τ ) I = 0 2q max
€
& sin (k + m)ω + Δω t + θ sin [(k − m)ωosc + Δω ]t + θ k [ ] ( osc k ck ' + (k + m) ω + Δ ω (k − m)ωosc + Δω () osc k=0 ∞
∑
{
€
€
negligible
(
sin Δω t + θ k I0 ≈ ⋅cm ⋅ 2q max Δω EECS 270C / Spring 2014
€
}
{
} *(+ (,
significant only for m=k
) Prof. M. Green / U.C. Irvine
44
Impulse Sensitivity Function (4)
[(
)]
For i (t) = I0 cos mωosc + Δω t
€
(
)
sin Δω t + θ k I0 I02 cm2 2 φ (t) ≈ ⋅cm ⋅ ⇒φ = 2 ⋅ 2q max Δω 8q max Δω
( )
2
Current-to-phase frequency response: I
€
ωosc
ω1
×
€
I0 c0 2q max ω1
φ
EECS 270C / Spring 2014
×
I0 c1 2q max ω1
€
ω1
2ωosc
ωosc-ω1
ωosc+ω1
2ωosc-ω1 2ωosc+ω1
×
ω
I0 c2 2q max ω1
€ Δω
Prof. M. Green / U.C. Irvine
45
Impulse Sensitivity Function (5) Case 2: Disturbance is stochastic: 2 MOSFET current noise: i n (f ) = 4kTγgm + gm2 Kf Δf Cg f i n2 Δf cm2 2 φ Δf ≈ 2 ⋅ thermal 1/f 8q max Δω 2 noise noise
A2/Hz
in
( )
€
i n2 Δf
€ 1/f noise
gm2
2 π ⋅ Kf Cg ω
thermal noise
×c0
€
€
€
i n2 Δf
€4kTγgm 2ωosc
ωosc
€ Sφ Δω
×c0
ω €
×c2
×c1 2ωosc
ωosc
€
€
( )
€ EECS 270C / Spring 2014
Δω
Prof. M. Green / U.C. Irvine
46
ω
Impulse Sensitivity Function (6) 1 Total phase noise: Sφ (Δω ) = 2 8q max
∑
( )
×c0
€
( )
due to thermal noise
i n2 Δf
€
∞ * , ck2 , gm2 Kf c02 0 + 2π ⋅ , 4kTγgm ⋅ 2 C g Δω Δω , ,+
due to 1/f noise
×c1
ωn €
×c2 2ωosc
ωosc
€
/ / 3/ / /.
ω
€
( )
Sφ Δω
2 0
( )
c = Γ
2
∞
€ EECS 270C / Spring 2014
Δω
∑ k=0
Prof. M. Green / U.C. Irvine
€
ck2 = Γrms
( )
2
47
Impulse Sensitivity Function (7) Sφ (Δω ) =
1 2 8q max
4kTγgm ⋅
€
) Γrms + 4kT γ g ⋅ m + Δω +*
( ) ( )
( ) (Δω) Γrms
2
2
= 2π
2 m
2
2
, g Kf . + 2π ⋅ 3. Cg Δω .-
( )
2 m
Γ
2
( )
( ) Γ
g Kf ⋅ Cg Δω
2
( )
3
⇒
Δωn,phase
2 ( + π g Γ = ⋅ m ⋅ ** 2kT γCg ) Γrms -,
noise corner frequency ωn
€ Sφ Δω (dBc/Hz)
( )
€ 1/(Δω)3
€
region: −30 dBc/Hz/decade € 1/(Δω)2 region: −20 dBc/Hz/decade
Δωn,phase
Δω (log scale)
Prof. M. Green / U.C. Irvine
EECS 270C / Spring 2014
€
48
Impulse Sensitivity Function (8) Example 1: sine wave Vosc (t)
Example 2: square wave Vosc (t)
t
€
t
€
Γ(τ )
Γ(τ )
τ
€
τ
€
Γrms is higher ⇒ will generate more 1/(Δω)2 phase noise
Example 3: asymmetric square wave Vosc (t)
€
t
€
Γ(τ )
τ
€
Γ > 0 ⇒ will generate more 1/(Δω)3 phase noise Prof. M. Green / U.C. Irvine
EECS 270C / Spring 2014
€
49
Impulse Sensitivity Function (9) Effect of current source in LC VCO:
Due to symmetry, ISF of this noise source contains only even-order coefficients − c0 and c2 are dominant. +
Vosc
EECS 270C / Spring 2014
_
⇒ Noise from current source will contribute to phase noise of differential waveform.
Prof. M. Green / U.C. Irvine
50
Impulse Sensitivity Function (10) ID varies over oscillation waveform
Same period as oscillation
i n2 = 4kTγgm (t) Δf & ) W = (4kTγ ) ⋅ ( µCox ⋅ VGS (t) −Vt + L ' *
(
2 & ) i n0 W = (4kTγ ) ⋅ ( µCox ⋅ VGS(DC ) −Vt + Let Δf L ' *
(
€
2 2 i i n n0 Then = ⋅ α (t) Δf Δf €
We can use
VGS (t) −Vt VGS(DC ) −Vt
€ Prof. M. Green / U.C. Irvine
€
where α (t) =
)
Γeff (τ ) = Γ(τ ) ⋅ α (τ )
€ EECS 270C / Spring 2014
)
51
ISF Example: 3-Stage Ring Oscillator R1A
R1B
M1A
M1B MS1
R2A
R2B
M2A
M2B MS2
R3A
R3B
M3A
+ Vout −
M3B MS3
fosc = 1.08 GHz PD = 11 mW
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
52
ISF of Diff. Pairs ISF by tx1 for 3stage differential ring osc
ΓM1A
3
3
2
2
2
1
1
-1
0
1
2
3
4
5
6
-2
7
-1
0
1
4
5
6
7
0 -1
-3
-4
-4
-4
-5
-5
3
2
2
1
1
€
0 -1
2
3
4
5
-2
6
7
ΓM2B
7
5
6
7
1
€ 0
1
2
3
4
5
-2
6
7
0 -1
-4
-4
-5
0
1
2
3
4
-2
-4
Γ = −0.26
6
2
-3
Γrms = 1.86
5
ISF by tx6 for differential ring osc
ΓM3B
-3
-5 Radian
Radian
4
3
-3
-5
3
Radian
ISF by tx4 for differential ring osc
0 -1
2
-5
ISF by tx6
ISF by tx2 for differential ring osc
1
1
Radian
3
0
0
-2
-3
ISF by tx4
ISF by tx2
3
-3
ΓM1B
Radian
for each diff. pair transistor
EECS 270C / Spring 2014
€
2
-2
Radian
€
1
€
0
ISF by tx5
€
0
ISF by tx5 for differential ring osc
ΓM3A
3
ISF by tx3
ISF by tx1
€
ISF by tx3 for differential ring osc
ΓM2A
Prof. M. Green / U.C. Irvine
53
ISF of Resistors
ΓR1A
ΓR2A
€
€
Γrms = 1.72 Γ = −0.16
€
ΓR3A
€
for each resistor
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
54
ISF of Current Sources
ISF by tail tx1 for differential ring osc
ΓMS1
2
2
1.5
1.5
1.5
ISF by tail tx1
0.5 0 -0.5
0
1
2
3
4
5
€
1
6
7
1
0.5 0 -0.5
0
1
2
3
4
5
6
ISF by tail tx3
€
1
7
0.5 0 -0.5
-1
-1
-1
-1.5
-1.5
-1.5
-2
-2 Radian
Γrms = 1.00 Γ = −0.12
ISF by tail tx3 for differential ring osc
ΓMS3
2
ISF by tail tx2
€
ISF by tail tx2 for differential ring osc
ΓMS2
0
1
2
3
4
5
6
-2 Radian
Radian
for each current source transistor ISF shows double frequency due to source-coupled node connection.
€ EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
55
7
€
Phase Noise Calculation Using: Cout = 1.13 pF Vout = 601 mV p-p qmax = 679 fC 2 2 2 Γrms(dp) 4kTγ gm(dp) Γrms(res) Γrms(cs) 4kTγ gm(cs) 4kT R L{Δf } = 6 ⋅ 2 2 ⋅ + 6⋅ 2 2 ⋅ 2 + 3⋅ 2 2 ⋅ 2 2 8π Δf qmax 8π Δf qmax 8π Δf qmax
322 Δf 2
€ 514 €Δf 2
⇒ L{Δf } =
122 Δf 2
= −112 dBc/Hz @ Δf = 10 MHz
EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
70 Δf 2
€
56
Phase Noise vs. Amplitude Noise (1)
How are the single-sideband noise spectrum Ltotal(Δω) and phase spectral density Sφ(ω) related?
[(
)]
Vosc (t) = [Vc + v (t)] ⋅exp j ωosc t + φ (t)
€
vφ φ ωosct
EECS 270C / Spring 2014
v
Spectrum of Vosc would include effects of both amplitude noise v(t) and phase noise φ(t).
Prof. M. Green / U.C. Irvine
57
Phase Noise vs. Amplitude Noise (2) Recall that an input current impulse causes an enduring phase perturbation and a momentary change in amplitude: i(t)
i(t)
t Vc(t)
t Vc(t)
Δt = 0
EECS 270C / Spring 2014
Δt =
Δq ω osc
Prof. M. Green / U.C. Irvine
Amplitude impulse response exhibits an exponential decay due to the natural amplitude limiting of an oscillator ...
58
Phase Noise vs. Amplitude Noise (3) ( )
( )
Lφ Δω
Lamp Δω
€
€
+
ωc
Δω
Δω
Q
( )
Ltotal Δω Δω
€
Phase noise dominates € at low offset frequencies.
Δω
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
59
€
Phase Noise vs. Amplitude Noise (4) Sv(ω)
( ≈ (V
) ( + v (t)) ⋅ [cos(ω
Vosc (t) = Vc + v (t) ⋅ cos ωosc t + φ (t) c
osc
)
t) − φ (t) ⋅ sin(ωosc t)]
= Vc cos(ωosc t) − φ (t) ⋅Vc sin(ωosc t) + v (t) ⋅ cos(ωosc t) noiseless oscillation waveform
phase noise component
amplitude noise component
Amplitude limiting will decrease amplitude noise but will not affect phase noise.
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
phase noise
amplitude noise
ωosc
ω
Phase & amplitude noise can’t be distinguished in a signal.
60
Sideband Noise/Phase Spectral Density (
)
Vosc (t) = Vc ⋅ cos ωosc t + φ (t)
≈ Vc ⋅ [cos(ωosc t) − φ (t) ⋅ sin(ωosc t)]
Vc ⋅ cos(ωosc t) −Vc ⋅ φ (t) ⋅ sin(ωosc t)
€
noiseless oscillation waveform
€
Pphase noise Psignal
phase noise component
1 2 2 Vc ⋅ φ 2 = = φ2 1 2 Vc 2
( )
Lphase Δω =
1 ⋅Sφ Δω 2
( )
€ € EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
61
Jitter/Phase Noise Relationship (1) NT
σ τ2 ≡ =
2, 1 ) ⋅E φ (t + τ ) − φ (t) * [ ] 2 + . ωosc
1 2 2 ⋅ E φ (t + τ ) + E φ (t) − 2E [φ (t) ⋅ φ (t + τ )] 2 ωosc
{ [
autocorrelation functions
€
€
] [
Rφ (0)
}
]
Rφ (0)
2Rφ (τ )
2 ⋅ [Rφ (0) − Rφ (τ )] 2 ω € osc € €
⇒ σ τ2 =
Recall Rφ and Sφ(Δω) are a Fourier transform pair:
1 Rφ (τ ) = 2π
∫
∞
−∞
EECS 270C / Spring 2014
€
Sϕ (Δ€ ω ) ⋅e j ( Δω )τ d(Δω ) Prof. M. Green / U.C. Irvine
62
Jitter/Phase Noise Relationship (2) 1 Rφ (0) = 2π 1 Rφ (τ ) = 2π
€
∞
∫ S (Δω)d(Δω) φ
−∞ ∞
∫ S (Δω) ⋅e
j ( Δω )τ
φ
d(Δω )
−∞
∞
1 j ( Δω )τ σ = ⋅ S (Δ ω ) 1− e d(Δω ) φ 2 πωosc −∞
∫
2 τ
(
)
∞
1 = ⋅ Sφ (Δω ) [1− cos(Δω τ ) − j sin(Δω τ )] d(Δω ) 2 πωosc −∞
∫
4 = ⋅ 2 πωosc
€
EECS 270C / Spring 2014
∞
∫ 0
, Δω τ / Sφ (Δω ) ⋅sin . 1 d(Δω ) 2 0 2
Prof. M. Green / U.C. Irvine
63
Jitter/Phase Noise Relationship (3) 3
2
Jitter from 1/(Δω) noise:
Jitter from 1/(Δω) noise:
a^ Let
Sφ (Δω ) = (Δω )2
€
€
4 σ τ2 = ⋅ 2 πωosc
€
∫ 0
( + a^ 2 (Δω )τ ⋅sin * - d(Δω ) 2 2 (Δω ) ) ,
4 a^ πτ = ⋅ 2 πωosc 4
= €
∞
a^ 2 ωosc
€
⋅τ
Let
Sφ (Δω ) =
€
4 σ τ2 = ⋅ 2 πωosc
∞
∫ ε
b (Δω )3
( + b 2 (Δω )τ ⋅sin * - d(Δω ) 3 (Δω ) ) 2 ,
=ζ ⋅τ2
€ a = 2 ⋅ τ where a^ ≡ (2π )2 ⋅a € fosc
Consistent with jitter accumulation measurements!
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
64
Jitter/Phase Noise Relationship (4) ( )
Sφ Δf
€
(dBc/Hz)
• Let fosc = 10 GHz • Assume phase noise dominated by 1/(Δω)2
-20dBc/Hz per decade -100
( )
Sφ Δf =
a (Δf )2
Setting Δf = 2 X 106 and Sφ =10-10:
(
Δf€
2 MHz
)
Sφ 2 ⋅106 =
a
(2 ⋅10 ) 6
2
= 10−10 ⇒ a = 400
Accumulated jitter:
σ τ2 =
€
a 400 ⋅ τ = fc2 10 ⋅109
(
EECS 270C / Spring 2014
)
2
[
]
⋅ τ€= 4 ⋅10−18 ⋅ τ
€
[
]
σ τ = 2 ⋅10−9 ⋅ τ Let τ = 100 ps (cycle-to-cycle jitter): ⇒ στ = 0.02ps rms (0.2 mUI rms)
Prof. M. Green / U.C. Irvine
65
Jitter/Phase Noise Relationship (5) More generally:
( )
Sφ Δf
€
a (Δfm )2 ⋅10Nm 10 Sφ Δf = = (Δf )2 (Δf )2
( )
(dBc/Hz)
σ τ2 =
-20 dBc/Hz per decade€
Nm
Δf
2 fosc
% f (2 ⋅ τ = ' m * ⋅10Nm 10 ⋅ τ & fosc )
$f ' σ τ = & m ) ⋅10Nm 20 ⋅ τ % fosc (
€
Δfm
a
στ = fm ⋅10Nm 20 ⋅ τ Tosc
[ps]
[UI]
€ Let phase noise increase by 10 dBc/Hz:
στ € ( Nm+10) → fm ⋅10 Tosc
20
& ) ⋅ τ = (fm ⋅10Nm 20 ⋅ τ + ⋅100.5 ' *
⇒ rms jitter increases by a factor of 3.2
€
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
66
Jitter Accumulation (1) φin φfb
phase detector
loop filter
VCO
Kpd
F (s)
Kvco
€
÷N
Open-loop characteristic: €
φvco
+
φout
€
φout K 1 = G(s) = K pd ⋅F (s) ⋅ vco ⋅ φε 2πs N
NG(s) 1 φ = ⋅ φ + ⋅ φvco Closed-loop characteristic: out in 1+G(s) 1+G(s) €
€ EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
67
Jitter Accumulation (2) G(s) =
Recall from Type-2 PLL:
Ich Kvco 1 1+ sCR ⋅ 2 ⋅ N s (C + Cp ) 1+ sCeq R
-40 dB/decade
( )
Sφ Δω (dBc/Hz)
€
|1 + G| |G| z
1
φout jΔω φvco
(
ω0
p
Δω
1/(Δω)3 region: −30 dBc/Hz/decade € 1/(Δω)2 region: −20 dBc/Hz/decade
2
)
Δωn,phase
Δω
€ As a result, the phase noise at low offset frequencies is determined by input noise...
€
80 dB/decade
ω0
EECS 270C / Spring 2014
Δω
Prof. M. Green / U.C. Irvine
68
Jitter Accumulation (3)
( )
Sφ Δf
€
-100
• fosc = 10 GHz • Assume 1-pole closed-loop PLL characteristic
(dBc/Hz)
+ a , Δf << Δf0 2 2 Δf0 - Δf0 Sφ Δf = ≈ , $ Δf '2 - a , Δf >> Δf 0 1+ & ) - Δf 2 % Δf0 ( . a
-20dBc/Hz per decade
( )
( )
( ) ( )
∞
€ Δf0 = 2 MHz
Rφ (τ ) =
⇒ σ τ2 = =
€
(2π ⋅ Δf )
⋅e −2 π ⋅f0τ
2 ⋅ [Rφ (0) − Rφ (τ )] 2 2π ⋅fosc a 2 fosc
1− e −2 π ⋅f0 τ ⋅ 2π ⋅ Δf0
Prof. M. Green / U.C. Irvine
EECS 270C / Spring 2014
a 0
−∞
Δf €
∫
Sφ (Δf ) ⋅e j (2 πΔf )τ ⋅d(Δf ) =
69
Jitter Accumulation (4) 2 τ
σ =
a 2 fosc
1− e −2 π ⋅f0 τ ⋅ 2π ⋅ Δf0
) a 1 ⋅ τ , τ << + 2 + fosc 2 π (Δf0 ) ≈* 1 1 + a ⋅ , τ >> 2 +, fosc 2 π (Δf0 ) 2 π (Δf0 )
a = 4 × 102 Δf0 = 2 MHz
€
fosc = 10 GHz
€
σ τ2 (log scale)
€
slope =
€
For small τ: στ = 0.02 ps rms cycle-to-cycle jitter For large τ: στ = 1.4 ps rms Total accumulated jitter
a 2 fosc
τ
1 (2π ) ⋅(2 MHz)
€
EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
70
Jitter Accumulation (5) σ τ2 (log scale) proportional to τ2 (due to 1/f noise)
€ proportional to τ (due to thermal noise)
τ
The primary function of a PLL is to place a bound on cumulative jitter: σ τ2 (log scale)
€
τ
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
71
Closed-Loop PLL Phase Noise Measurement
L(Δω) for OC-192 SONET transmitter EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
72
Other Sources of Jitter in PLL
• Clock divider • Phase detector Ripple on phase detector output can cause high-frequency jitter. This affects primarily the jitter tolerance of CDR.
EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
73
Jitter/Bit Error Rate (1) Eye diagram from sampling oscilloscope
Histogram showing Gaussian distribution near sampling point 2σ L
€
2σ R
L
€
R
1UI
Bit error rate (BER) determined by σ and UI … EECS 270C / Spring 2014
Prof. M. Green / U.C. Irvine
74
Jitter/Bit Error Rate (2)
& 1 ( T −t pR (t) = ⋅exp(− 2σ 2 σ 2π ('
(
& t ) 1 pL (t) = ⋅exp(− 2 + ' 2σ * σ 2π 2
2σ
2σ
€
€
€
0
t0
T 2
T
T − t0 €
R
& x2 ) PL = ⋅ exp(− 2 + dx Probability of sample at t > t0 from left-€ t0 € ' 2σ * σ 2π € hand transition: 2) & T − x ∞ Probability of sample at t < t0 from right1 ( + P = ⋅ exp − dx R 2 ( + hand transition: t0 2σ σ 2π (' +* € EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine
1
∫
∫
€
∞
(
)
75
)
2
) + + +*
Jitter/Bit Error Rate (3) & x2 ) PL = ⋅ exp(− 2 + dx t0 ' 2σ * σ 2π 1
∫
∞
& 1 ( T −x PR = ⋅ exp(− t0 2σ 2 σ 2π ('
∫
€
∞
(
)
) 1 + dx = ⋅ + σ 2π +*
2
& x2 ) exp(− 2 + T−t 0 ' 2σ *
∫
∞
Total Bit Error Rate (BER) given by:
€
& x2 ) 1 BER = PL + PU = ⋅ exp(− 2 + dx + ⋅ t0 2 σ ' * σ 2π σ 2π 1
∞
∫
& x2 ) exp(− 2 + dx T−t 0 ' 2σ *
∫
∞
# t & #T − t &1* 0 0 = ,erfc%% (( + erfc%% ((/ 2 ,+ $ 2σ ' $ 2σ '/.
€
where erfc(t) ≡
2
π
€ EECS 270C / Spring 2014
€
⋅
∫
t
∞
( )
exp −x 2 dx Prof. M. Green / U.C. Irvine
76
Jitter/Bit Error Rate (4) Example: T = 100ps log(0.5)
log BER σ = 2.5 ps σ = 5 ps € €
•
•
•
•
t0 (ps)
σ = 2.5 ps : € €
€ € BER ≤ 10−12 for t0 ∈ [18ps, 82ps] (64 ps eye opening)
σ = 5 ps : BER ≤ 10−12 for t0 ∈ [36ps, 74ps] (38 ps eye opening)
€ €
EECS 270C / Spring 2014
€ €
Prof. M. Green / U.C. Irvine
77
Bathtub Curves (1) The bit error-rate vs. sampling time can be measured directly using a bit error-rate tester (BERT) at various sampling points.
Note: The inherent jitter of the analyzer trigger should be considered.
( ) RJ Jrms
2 measured
EECS 270C / Spring 2014
€
( )
RJ = Jrms
2 actual
( )
RJ + Jrms
2 trigger
Prof. M. Green / U.C. Irvine
78
Bathtub Curves (2) Bathtub curve can easily be numerically extrapolated to very low BERs (corresponding to random jitter), allowing much lower measurement times.
Example: 10-12 BER with T = 100ps is equivalent to an average of 1 error per 100s. To verify this over a sample of 100 errors would require almost 3 hours! •
€
•
€
EECS 270C / Spring 2014
•
€
€
•
t0 (ps) Prof. M. Green / U.C. Irvine
79
Equivalent Peak-to-Peak Total Jitter p(t) BER
RJ JPP
10-10
12.7 ⋅ σ
10-11
13.4 ⋅ σ
€€ 10-12
14.1⋅ σ
10-13€
14.7 ⋅ σ
10-14€
15.3 ⋅ σ
Areas sum to BER
€
€
1 nσ 2
€
σ, T determine BER
RJ BER determines effective JPP Total jitter given by:
€
1 nσ 2
€
DJ J TJ = n ⋅ σ + JPP €
(
)
EECS 270C / Spring 2014
€
Prof. M. Green / U.C. Irvine
80