X JORNADAS TÉCNICAS - ABB EN CHILE, 11-12 ABRIL, 2017
HVDC – Systems Applications and Benefits
Felipe Nobre, Gerente de Subestaciones, Chile
Agenda
ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV
April 18, 2017
Slide 2
Moldando el mundo hoy por medio da la innovación Pionera en tecnología desde 1883 Os fundadores
Turbochargers
Turbina a vapor
Turbina a gás
1900
1920
Painéis isolados a gás
Robôs industriais
Sistema de acionamento elétrico para locomotivas
1930
1940
HVDC
Motor sem redutor
1950 1960
1970 1980 Acionamentos e inversores de frequência
1990
April 18, 2017
Slide 3
Sistemas de controle distribuído
Sistemas de propulsão elétrica
2000
Ultra-alta tensão
HVDC history History and Introduction
Slide 4 (22)
First commercial HVDC transmission in 1954 (100 kV, 20 MW)
April 18, 2017
Slide 4
Gotland – Swedish mainland
Cable length: 100 km
HVDC history ABB, the pioneer in HVDC
April 18, 2017
Slide 5
Liderazgo global en HVDC ABB subministró más de la mitad de todos los proyectos
April 18, 2017
Slide 6
Power Grids Division Opportunities to deliver value to our customers Market drivers Renewables and distributed generation Longer transmission distances Power quality Power grid automation New grids: emerging markets Aging grids: developed markets Service and asset health management
April 18, 2017
Slide 7
Sistema DC Europeu Futuro
April 18, 2017
Slide 8
Agenda
ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV
April 18, 2017
Slide 9
HVDC characteristics
Generator
HVDC transmission system
Load
Why use HVDC instead of AC?
Slide 10 (22)
DC Decreases total cost for long distance power transmission with overhead lines and/or cables. DC enables connection between asynchronous AC networks. Gives fast and accurate control of the power flow.
April 18, 2017
Slide 10
Total cost DC vs. AC AC
Investment Costs
Total AC cost
DC
Total DC Cost Variables Cost of Land Cost of Materials Cost of Labour Time to Market Permits …etc.
DC terminal Costs AC Terminal costs
Distance Critical Distance
April 18, 2017
Slide 11
Lower losses
Slide 12 (22)
HVDC 2x500 kV
April 18, 2017
Slide 12
Transmisión AC Camino de la línea aérea
April 18, 2017
Slide 13
Transmisión AC Camino de la línea aérea con compensación de FACTs
April 18, 2017
Slide 14
Transmisión AC Camino de la línea aérea con compensación de FACTs
April 18, 2017
Slide 15
Transmisión HVDC Camino de la línea aérea
April 18, 2017
Slide 16
Transmisión HVDC Camino de la línea aérea
April 18, 2017
Slide 17
Transmisión HVDC Light Camino de cables subterráneos
April 18, 2017
Slide 18
Interconnection of power systems
Conventional HVAC
Slide 19 (22)
HVAC with FACTS
Why use HVDC for interconnections? Exact power flow control Efficient use of generating capacity Stability control No increase of short circuit currents Less environmental impact Low losses for long distance transmissions Lower investment
April 18, 2017
Slide 19
HVDC
DC
Agenda
ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia y aplicaciones
April 18, 2017
Slide 20
Thyristor Function + Vthyr -
Current direction Block high voltage in both directions Conduct current in forward direction Turn on when given firing pulse and positive voltage Turn off when the thyristor current crosses zero
April 18, 2017
Slide 21
HVDC Light – Link of two technologies LCC + SVC = VSC VSC
LCC
SVC
Uv Uv
{ April 18, 2017
Slide 22
Introducción: tipos básicos de Conversor HVDC e HVDC Light
April 18, 2017
Slide 23
BU Grid Integration Product Portfolio HVDC Classic Portfolio and application ABB offers a complete portfolio: – Turnkey HVDC transmission systems – DC voltage up to 1,100 kV – Power range up to 10,000 MW – System retrofit through upgrading, uprating & major retrofit of converter stations – Power Semiconductors: Thyristors for HVDC HVDC Classic can be applied for the following: – Connecting remote generation – Bulk transmission of energy – Interconnecting grids – Connecting remote loads – Upgrades
April 18, 2017
Slide 24
BU Grid Integration Product Portfolio VSC – HVDC Light® Portfolio and application ABB offers a complete portfolio: – Turnkey HVDC Light® transmission systems – Land cable, overhead line or sea cable connections – Power range 50 -1,800 MW – Power Semiconductors: IGBTs HVDC Light® can be applied for the following: – Connecting remote generation, Interconnecting grids, Offshore wind connections – City center infeed – Power from shore – DC links in AC grids – Connecting remote loads – Upgrades
April 18, 2017
Slide 25
Tecnologías HVDC - Conversoras HVDC Clásico (Conmutación natural), “LCC”
Nivel de corto-circuito mínimo: SMVA > 2 x Pd (>1.3 x Pd con CCC) Nivel mínimo de potencia: 5-10% Demanda potencia reactiva en los terminales Potencias mas altas, escalas de economía
HVDC Light (Conmutación forzada), “VSC”
No requiere nivel mínimo de corto-circuito No requiere nivel mínimo de potencia No demanda potencia reactiva Control independiente de la potencia activa y reactiva Soporte dinámico de voltaje: Q ~= ± 0.5 x Pdnom
April 18, 2017
Slide 26
HVDC Light: Potencia Activa y Reactiva Comparación con HVDC Clásica
HVDC Light:
No requiere compensación reactiva; STATCOM con un rango dinámico ~ 0.5Pd/+0.5Pd Mvar bajo un factor de potencia de 90%.
HVDC Clásica:
~ compensación reactiva con filtros y bancos en paralelo maniobrados
P (p.u.)
1.25
Q
1 0,5
0.75
Suministro de bancos de capacitores y filtros
Rectifier operation Qabs (p.u.)
0,13
0.5 0.25
0.75 0.5 0.25 0 1,0 Id
Slide 27 (22)
Desbalace con la red
Inverter operation
0.25 0.5 0.75
- 0,5
Consumo de la conversora
1 1.25
April 18, 2017
Slide 27
Qgen (p.u.)
0.25 0.5 0.75 Operación individual posible en qualquier punto dentro de la curva (respetando que PR~PI ), i.e. QR y QI pueden ser despachadas totalmente distintas (Diagrama válida en operación BtB)
HVDC Light versus HVDC Clásica Rangos comparativos Ucd en kV 800 700 600
400
HVDC Light con cables poliméricos
300 200
HVDC con cables MI
500
HVDC Light con líneas aereas HVDC Clásica con líneas aereas
0 0
1000
2000
3000
4000
5000
Potencia en MW April 18, 2017
Slide 28
6000
7000
HVDC Control Line-commutated converters Power direction:
Power reversal:
1W +100 V
~
Rectifier +100 V 100 W Slide 29 (22)
0V
1W +99 V
1A
-99 V
~ ~
Inverter
Inverter
-100 V
1A
~ Rectifier
+99 V 99 W 0V 100 W
99 W -99 V
April 18, 2017
Slide 29
-100 V
HVDC Transmission Configurations Symmetric monopole ~
=
Bipole =
~
Asymmetric monopole, metallic return ~
=
=
~
~
=
=
=
=
~
~
~ Bipole, metallic return ~
Asymmetric monopole, ground return =
Slide 30 (22)
~
=
~ ~
=
=
=
=
~
~ Connection between Converter Stations can be Overhead Lines or Cables
April 18, 2017
Slide 30
HVDC Transmission Configurations Multiterminal Symmetric monopole ~
=
= =
~
~
Bipole with parallel converters (doubling current) ~
Slide 31 (22)
~
April 18, 2017
Slide 31
=
~
=
~
=
=
=
=
~
=
~
=
~
~
Single-line diagram for a typical converter station
AC yard 11th harmonic filter
Converter
DC yard
Valve hall Pole line
13th harmonic filter DC filter Highpass filter
Slide 32 (22)
Monopolar Converter Station
April 18, 2017
Slide 32
To ground electrode or metallic return
Single-line diagram for a typical converter station AC yard 11th harmonic filter
Converter
DC yard
Valve hall Pole line
13th harmonic filter DC filter Highpass filter
Pole 1
Electrode To electrode lines lines
Highpass filter 13th harmonic filter
DC Filter
Pole 2 Pole line
Slide 33 (22)
11th harmonic filter
AC bus
Bipolar Converter Station April 18, 2017
Slide 33
HVDC VSC Evolution Three-phase, two-level voltage-source converter for HVDC The very first VSC-HVDC scheme installed (the Hellsjön experimental link commissioned in Sweden in 1997) until 2012, most of the VSC HVDC systems built were based on the two level converter.
Three-phase, three-level, diode-clamped voltage-source converter for HVDC
Slide 34 (22)
In an attempt to improve on the poor harmonic performance of the two-level converter. In a refinement of the diode-clamped converter, the so-called active neutral-point clamped converter, the clamping diode valves are replaced by IGBT valves, giving additional controllability. Such converters were used on the Murraylink project in Australia and the Cross Sound Cable link in the United States.
April 18, 2017
Slide 34
HVDC VSC Evolution Three-phase Modular Multi-Level Converter (MMC) for HVDC.
Slide 35 (22)
The Modular Multi-Level Converter (MMC) is now becoming the most common type of voltage-source converter for HVDC. Like the two-level converter and the sixpulse line-commutated converter, a MMC consists of six valves, each connecting one AC terminal to one DC terminal.
April 18, 2017
Slide 35
Cables HVDC Light Para HVDC Light ABB ha desarrollado cables triple-extruidos de bajo peso y con empalmes prefabricados, que: Ø Son probados, secos, confiables y rápidos de montar Ø No require búnker de hormigón, sino solamente una cubierta de arena Ø Permite juntar cables con diferentes areas del conductor 2001 Murraylink, 360 km ± 150 kV, 220 MW
2000 Directlink, 354 km ± 80 kV, 60 MW
1997 Hellsjön ± 10 kV, 3 MW
April 18, 2017
Slide 36
2004 Estlink, 210 km ± 150 kV, 350 MW
2010 DolWin 1, 330 km ± 320 kV, 800 MW
2014 ± 525 kV, 2600 MW
Agenda
ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV
April 18, 2017
Slide 37
HVDC Project Map – South America
South America SA 1: Itaipu 2x 3150MW, 600kV, bipole SA 2: Brazil-Argentina interconetion 2x 1100MW, CCC back to back SA 3: Rio Madeira 2x 400MW, CCC back to back SA 4: Rio Madeira 3150MW, 600kV, bipole
April 18, 2017
Slide 38
Argentina - Brasil Interconnection I & II “Garabi” § § § § §
2 x 1000 MW delivery capability 50/60 Hz B-t-B converter station : 4 x 550 MW blocks 2 x 488 km, 500 kV ac transmission line 22 months to commercial operation, each stage CCC Converter stations solution to comply with the low short circuit ratio.
April 18, 2017
Slide 39
Itá
Rincon Santa Maria
Garabi
Argentina – Brasil 1 : Garabi BtB Converter 85 MVAr AC Filter Bank
550 MW 12-Pulse Converter Block ± 70 kV, 3930 A
85 MVAr AC Filter Bank
Spare Phase 500 kV, 50 Hz
525 kV, 60 Hz
PLC Equipment
PLC Equipment Ring Bus
92.5 MVAr Line Shunt Reactor
94.8 MVAr per 6-Pulse Converter
161.1 MVAr per 6-Pulse Converter 250 MVAr Line Shunt Reactor
Figure 6 Garabi Converter Station Single Line Diagram
April 18, 2017
Slide 40
Argentina - Brasil : Garabi 1 + 2 Block 4
Garabí 2
Block 3
Line 2 Tie-breakers
Line 2 Shunt reactor
Tie-breakers
Line 1
Line 1
Garabí 1
Block 2
AC filter Block 1
April 18, 2017
Slide 41
Argentina - Brazil Interconnection I & II “Garabi”
Garabi Converter Area Transformers, Valve Modules, CCC Capacitors 2x550 MW Blocks
April 18, 2017
Slide 42
Garabi Valve Modules, ± 70 kV 4000 A
Argentina - Brasil : Garabi BtB Converter 60 Hz 550 MW Block 2
550 MW Block 1
50 Hz
April 18, 2017
Slide 43
• • • •
Distributed containers with control systems close to the yard Optical CV and VTs Optical DCCT CCC Capacitors Banks
Argentina - Brasil : Garabi BtB Converter
Valve Modules 3xQuadrivalve
CCC capacitors Converter Transformers CCC capacitors
April 18, 2017
Slide 44
Argentina - Brasil : Garabi 1 + 2
April 18, 2017
Slide 45
Desafios da Transmissão Rio Madeira Distancia Potencia Dos usinas Generadores
2350 km 6450 MW 88 generadores 72 e 75 MW
Desafíos: •Distancia muy grande. •Múltiples generadores de pequeño porte. •Interconexión con sistema de 230 kV flaca. Soluciones: •Eficiencia con uso de HVDC en ± 600 kV. •Uso de “controlabilidad” de HVDC •Flexibilidad usando de Back-to-Back con CCC Experiencia: •25 anos de HVDC en ± 600 kV, Furnas/Itaipu •Garabi 2200 MW Back-to-Back con CCC April 18, 2017
Slide 46
Sistema de Transmisión del Rio Madeira CPV station BtB 2x400 MW Lot A
Bipole 1 ± 600 kV line Lot D
Bipole 2 ± 600 kV line Lot G
Bipole 2 3150 MW Lot F April 18, 2017
Slide 47
Bipole 1 3150 MW Lot C
Sistema de Transmisión del Rio Madeira
The two back-to-back blocks are each rated 400 MW, although maximum power transmission into the 230kV is limited to 600 MW, at least until 2017. To overcome the problems of feeding into such a weak system, the back-to-back uses Capacitor Commutated Converters (CCC), improving not only performance related to commutation failures, but also reducing the need for shunt reactive compensation. Although not strictly necessary from a performance point of view the 500 kV side of the back-to-back also uses CCC technology. This permits use of harmonic filters with a relatively low Mvar rating on both sides of these converters. April 18, 2017
Slide 48
Sistema de Conexión Acre - Rondônia Operating modes The back-to-back has to operate in various considerably different configurations of the network: 1. 2. 3. 4. 5.
April 18, 2017
Feeding weak 230 kV network synchronous with the Brazilian network. As normal operation, but with a large gas fired thermal unit in operation locally in Porto Velho. As normal operation initially, but separating from the Brazilian System (Isolated operation). Start-up in isolated operation (Black start). Feeding 500 kV converter bus from 230 kV (Reverse power direction). Slide 49
Bipolo 1, 3150 MW Rio Madeira Transmisión, Lote C Porto Velho
Araraquara
Notes: Includes metallic return, paralleling of bipoles and of lines Lot C includes Master Control of Back-to-Back and Bipole 2
April 18, 2017
Slide 50
Conversoras da Transmissão em HVDC
CPV Bipole 1 Valve Hall Quadrivalvulas Trasformadores de tres enrolamientos April 18, 2017
Slide 51
Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C Salas de válvulas: Two winding trafo Height: 18 m Width: 53 m Depth: 25 m Three winding trafo Height: 23 m Width: 27 m Depth: 25 m
Bi-valves en Araraquara Quadri-valves en Porto Velho
April 18, 2017
Slide 52
Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C
Estacion Araraquara – Rio Madeira ± 600 kV Junho 2012 April 18, 2017
Slide 53
HVDC transformers
Largest HVDC transformer Single phase 3 winding Power: 621/310,5/310,5 MVA Connection: Yn/Y/D
April 18, 2017
Slide 54
Rio Madeira Transmission Transporte transformadores para Porto Velho, via Manaus
April 18, 2017
Slide 55
Coletora Porto Velho
Future
Lot LA-CC Lot LF-CC
April 18, 2017
Slide 56
Lot LC-CC
Rio Madeira HVDC Project Pictures from Site
April 18, 2017
Slide 57
Porto Velho Back to Back station
Rio Madeira HVDC Project Pictures from Site ABB Araraquara Converter station (right) and
Two transformers moved into position
April 18, 2017
Slide 58
Alstom station in the middle
Coletora Porto Velho
April 18, 2017
Slide 59
BtB 1, 400 MW Rio Madeira Transmissão, Lote A Teste de tipo, Octo-Valvula
CCC, Transformador de três fases, Octo-valvulas ± 50 kV
April 18, 2017
Slide 60
Rio Madeira HVDC Project Pictures from Site
April 18, 2017
Slide 61
Line Fault test
Proyectos futuros en Brasil Bipoles A & B N/SE and NE/SE Transmission Expansion
Tapajos Madeira
Transmission Line:
Belo Monte Int. N – S Parauapebas
Int NE – SE Graça Aranha
Araraquara
Assis
Voltage: Power:
7,500 MW for 2 bipoles
Expected Auction/Award:
April 18, 2017
Slide 62
2018/2019
HPP Tapajós Transmission System T. Rio
Transmission Line: Voltage: Power:
Itaipu
± 800 kV DC
Tapajos 1 & 2
Silva nia Estreito
2,100 km N/SE 1,500 km NE/SE
1,500 km BP1 2,500 km BP2 ± 800 kV DC
8,000 MW for 2 bipoles
Expected Auction/Award: 2019/2020 BP1 2020/2021 BP2
Razones para el uso de HVDC. Cuando y porque usar ellos de Corriente Continua? 1. Menos costo de inversión 2. Distancias longas 3. Perdidas menores 4. Interconexiones asíncronas 5. Flexibilidad de controle 6. Limitación de corrientes de corto 7. Medio-ambiente Sumario Mais eficiente Mais robusto Menos impacto ambiental
April 18, 2017
Slide 63
Contactos Felipe Nobre Gerente de Grid Integration Teléfono: +56 2 2471 4322 Celular: +56 9 4432 3687 E-mail:
[email protected]
April 18, 2017
Slide 64