Applications and Benefits - ABB Group - Leading digital

X JORNADAS TÉCNICAS - ABB EN CHILE, 11-12 ABRIL, 2017 HVDC – Systems Applications and Benefits Felipe Nobre, Gerente de Subestaciones, Chile...

6 downloads 849 Views 5MB Size
X JORNADAS TÉCNICAS - ABB EN CHILE, 11-12 ABRIL, 2017

HVDC – Systems Applications and Benefits

Felipe Nobre, Gerente de Subestaciones, Chile

Agenda

ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017

Slide 2

Moldando el mundo hoy por medio da la innovación Pionera en tecnología desde 1883 Os fundadores

Turbochargers

Turbina a vapor

Turbina a gás

1900

1920

Painéis isolados a gás

Robôs industriais

Sistema de acionamento elétrico para locomotivas

1930

1940

HVDC

Motor sem redutor

1950 1960

1970 1980 Acionamentos e inversores de frequência

1990

April 18, 2017

Slide 3

Sistemas de controle distribuído

Sistemas de propulsão elétrica

2000

Ultra-alta tensão

HVDC history History and Introduction

Slide 4 (22)

First commercial HVDC transmission in 1954 (100 kV, 20 MW)

April 18, 2017

Slide 4

Gotland – Swedish mainland

Cable length: 100 km

HVDC history ABB, the pioneer in HVDC

April 18, 2017

Slide 5

Liderazgo global en HVDC ABB subministró más de la mitad de todos los proyectos

April 18, 2017

Slide 6

Power Grids Division Opportunities to deliver value to our customers Market drivers Renewables and distributed generation Longer transmission distances Power quality Power grid automation New grids: emerging markets Aging grids: developed markets Service and asset health management

April 18, 2017

Slide 7

Sistema DC Europeu Futuro

April 18, 2017

Slide 8

Agenda

ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017

Slide 9

HVDC characteristics

Generator

HVDC transmission system

Load

Why use HVDC instead of AC?

Slide 10 (22)

DC Decreases total cost for long distance power transmission with overhead lines and/or cables. DC enables connection between asynchronous AC networks. Gives fast and accurate control of the power flow.

April 18, 2017

Slide 10

Total cost DC vs. AC AC

Investment Costs

Total AC cost

DC

Total DC Cost Variables Cost of Land Cost of Materials Cost of Labour Time to Market Permits …etc.

DC terminal Costs AC Terminal costs

Distance Critical Distance

April 18, 2017

Slide 11

Lower losses

Slide 12 (22)

HVDC 2x500 kV

April 18, 2017

Slide 12

Transmisión AC Camino de la línea aérea

April 18, 2017

Slide 13

Transmisión AC Camino de la línea aérea con compensación de FACTs

April 18, 2017

Slide 14

Transmisión AC Camino de la línea aérea con compensación de FACTs

April 18, 2017

Slide 15

Transmisión HVDC Camino de la línea aérea

April 18, 2017

Slide 16

Transmisión HVDC Camino de la línea aérea

April 18, 2017

Slide 17

Transmisión HVDC Light Camino de cables subterráneos

April 18, 2017

Slide 18

Interconnection of power systems

Conventional HVAC

Slide 19 (22)

HVAC with FACTS

Why use HVDC for interconnections? Exact power flow control Efficient use of generating capacity Stability control No increase of short circuit currents Less environmental impact Low losses for long distance transmissions Lower investment

April 18, 2017

Slide 19

HVDC

DC

Agenda

ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia y aplicaciones

April 18, 2017

Slide 20

Thyristor Function + Vthyr -

Current direction Block high voltage in both directions Conduct current in forward direction Turn on when given firing pulse and positive voltage Turn off when the thyristor current crosses zero

April 18, 2017

Slide 21

HVDC Light – Link of two technologies LCC + SVC = VSC VSC

LCC

SVC

Uv Uv

{ April 18, 2017

Slide 22

Introducción: tipos básicos de Conversor HVDC e HVDC Light

April 18, 2017

Slide 23

BU Grid Integration Product Portfolio HVDC Classic Portfolio and application ABB offers a complete portfolio: – Turnkey HVDC transmission systems – DC voltage up to 1,100 kV – Power range up to 10,000 MW – System retrofit through upgrading, uprating & major retrofit of converter stations – Power Semiconductors: Thyristors for HVDC HVDC Classic can be applied for the following: – Connecting remote generation – Bulk transmission of energy – Interconnecting grids – Connecting remote loads – Upgrades

April 18, 2017

Slide 24

BU Grid Integration Product Portfolio VSC – HVDC Light® Portfolio and application ABB offers a complete portfolio: – Turnkey HVDC Light® transmission systems – Land cable, overhead line or sea cable connections – Power range 50 -1,800 MW – Power Semiconductors: IGBTs HVDC Light® can be applied for the following: – Connecting remote generation, Interconnecting grids, Offshore wind connections – City center infeed – Power from shore – DC links in AC grids – Connecting remote loads – Upgrades

April 18, 2017

Slide 25

Tecnologías HVDC - Conversoras HVDC Clásico (Conmutación natural), “LCC”

Nivel de corto-circuito mínimo: SMVA > 2 x Pd (>1.3 x Pd con CCC) Nivel mínimo de potencia: 5-10% Demanda potencia reactiva en los terminales Potencias mas altas, escalas de economía

HVDC Light (Conmutación forzada), “VSC”

No requiere nivel mínimo de corto-circuito No requiere nivel mínimo de potencia No demanda potencia reactiva Control independiente de la potencia activa y reactiva Soporte dinámico de voltaje: Q ~= ± 0.5 x Pdnom

April 18, 2017

Slide 26

HVDC Light: Potencia Activa y Reactiva Comparación con HVDC Clásica

HVDC Light:

No requiere compensación reactiva; STATCOM con un rango dinámico ~ 0.5Pd/+0.5Pd Mvar bajo un factor de potencia de 90%.

HVDC Clásica:

~ compensación reactiva con filtros y bancos en paralelo maniobrados

P (p.u.)

1.25

Q

1 0,5

0.75

Suministro de bancos de capacitores y filtros

Rectifier operation Qabs (p.u.)

0,13

0.5 0.25

0.75 0.5 0.25 0 1,0 Id

Slide 27 (22)

Desbalace con la red

Inverter operation

0.25 0.5 0.75

- 0,5

Consumo de la conversora

1 1.25

April 18, 2017

Slide 27

Qgen (p.u.)

0.25 0.5 0.75 Operación individual posible en qualquier punto dentro de la curva (respetando que PR~PI ), i.e. QR y QI pueden ser despachadas totalmente distintas (Diagrama válida en operación BtB)

HVDC Light versus HVDC Clásica Rangos comparativos Ucd en kV 800 700 600

400

HVDC Light con cables poliméricos

300 200

HVDC con cables MI

500

HVDC Light con líneas aereas HVDC Clásica con líneas aereas

0 0

1000

2000

3000

4000

5000

Potencia en MW April 18, 2017

Slide 28

6000

7000

HVDC Control Line-commutated converters Power direction:

Power reversal:

1W +100 V

~

Rectifier +100 V 100 W Slide 29 (22)

0V

1W +99 V

1A

-99 V

~ ~

Inverter

Inverter

-100 V

1A

~ Rectifier

+99 V 99 W 0V 100 W

99 W -99 V

April 18, 2017

Slide 29

-100 V

HVDC Transmission Configurations Symmetric monopole ~

=

Bipole =

~

Asymmetric monopole, metallic return ~

=

=

~

~

=

=

=

=

~

~

~ Bipole, metallic return ~

Asymmetric monopole, ground return =

Slide 30 (22)

~

=

~ ~

=

=

=

=

~

~ Connection between Converter Stations can be Overhead Lines or Cables

April 18, 2017

Slide 30

HVDC Transmission Configurations Multiterminal Symmetric monopole ~

=

= =

~

~

Bipole with parallel converters (doubling current) ~

Slide 31 (22)

~

April 18, 2017

Slide 31

=

~

=

~

=

=

=

=

~

=

~

=

~

~

Single-line diagram for a typical converter station

AC yard 11th harmonic filter

Converter

DC yard

Valve hall Pole line

13th harmonic filter DC filter Highpass filter

Slide 32 (22)

Monopolar Converter Station

April 18, 2017

Slide 32

To ground electrode or metallic return

Single-line diagram for a typical converter station AC yard 11th harmonic filter

Converter

DC yard

Valve hall Pole line

13th harmonic filter DC filter Highpass filter

Pole 1

Electrode To electrode lines lines

Highpass filter 13th harmonic filter

DC Filter

Pole 2 Pole line

Slide 33 (22)

11th harmonic filter

AC bus

Bipolar Converter Station April 18, 2017

Slide 33

HVDC VSC Evolution Three-phase, two-level voltage-source converter for HVDC The very first VSC-HVDC scheme installed (the Hellsjön experimental link commissioned in Sweden in 1997) until 2012, most of the VSC HVDC systems built were based on the two level converter.

Three-phase, three-level, diode-clamped voltage-source converter for HVDC

Slide 34 (22)

In an attempt to improve on the poor harmonic performance of the two-level converter. In a refinement of the diode-clamped converter, the so-called active neutral-point clamped converter, the clamping diode valves are replaced by IGBT valves, giving additional controllability. Such converters were used on the Murraylink project in Australia and the Cross Sound Cable link in the United States.

April 18, 2017

Slide 34

HVDC VSC Evolution Three-phase Modular Multi-Level Converter (MMC) for HVDC.

Slide 35 (22)

The Modular Multi-Level Converter (MMC) is now becoming the most common type of voltage-source converter for HVDC. Like the two-level converter and the sixpulse line-commutated converter, a MMC consists of six valves, each connecting one AC terminal to one DC terminal.

April 18, 2017

Slide 35

Cables HVDC Light Para HVDC Light ABB ha desarrollado cables triple-extruidos de bajo peso y con empalmes prefabricados, que: Ø Son probados, secos, confiables y rápidos de montar Ø No require búnker de hormigón, sino solamente una cubierta de arena Ø Permite juntar cables con diferentes areas del conductor 2001 Murraylink, 360 km ± 150 kV, 220 MW

2000 Directlink, 354 km ± 80 kV, 60 MW

1997 Hellsjön ± 10 kV, 3 MW

April 18, 2017

Slide 36

2004 Estlink, 210 km ± 150 kV, 350 MW

2010 DolWin 1, 330 km ± 320 kV, 800 MW

2014 ± 525 kV, 2600 MW

Agenda

ABB y la Innovación Porque HVDC Tecnología HVDC Experiencia en el Proyecto Rio Madeira, HVDC ± 600 kV

April 18, 2017

Slide 37

HVDC Project Map – South America

South America SA 1: Itaipu 2x 3150MW, 600kV, bipole SA 2: Brazil-Argentina interconetion 2x 1100MW, CCC back to back SA 3: Rio Madeira 2x 400MW, CCC back to back SA 4: Rio Madeira 3150MW, 600kV, bipole

April 18, 2017

Slide 38

Argentina - Brasil Interconnection I & II “Garabi” § § § § §

2 x 1000 MW delivery capability 50/60 Hz B-t-B converter station : 4 x 550 MW blocks 2 x 488 km, 500 kV ac transmission line 22 months to commercial operation, each stage CCC Converter stations solution to comply with the low short circuit ratio.

April 18, 2017

Slide 39

Itá

Rincon Santa Maria

Garabi

Argentina – Brasil 1 : Garabi BtB Converter 85 MVAr AC Filter Bank

550 MW 12-Pulse Converter Block ± 70 kV, 3930 A

85 MVAr AC Filter Bank

Spare Phase 500 kV, 50 Hz

525 kV, 60 Hz

PLC Equipment

PLC Equipment Ring Bus

92.5 MVAr Line Shunt Reactor

94.8 MVAr per 6-Pulse Converter

161.1 MVAr per 6-Pulse Converter 250 MVAr Line Shunt Reactor

Figure 6 Garabi Converter Station Single Line Diagram

April 18, 2017

Slide 40

Argentina - Brasil : Garabi 1 + 2 Block 4

Garabí 2

Block 3

Line 2 Tie-breakers

Line 2 Shunt reactor

Tie-breakers

Line 1

Line 1

Garabí 1

Block 2

AC filter Block 1

April 18, 2017

Slide 41

Argentina - Brazil Interconnection I & II “Garabi”

Garabi Converter Area Transformers, Valve Modules, CCC Capacitors 2x550 MW Blocks

April 18, 2017

Slide 42

Garabi Valve Modules, ± 70 kV 4000 A

Argentina - Brasil : Garabi BtB Converter 60 Hz 550 MW Block 2

550 MW Block 1

50 Hz

April 18, 2017

Slide 43

• • • •

Distributed containers with control systems close to the yard Optical CV and VTs Optical DCCT CCC Capacitors Banks

Argentina - Brasil : Garabi BtB Converter

Valve Modules 3xQuadrivalve

CCC capacitors Converter Transformers CCC capacitors

April 18, 2017

Slide 44

Argentina - Brasil : Garabi 1 + 2

April 18, 2017

Slide 45

Desafios da Transmissão Rio Madeira Distancia Potencia Dos usinas Generadores

2350 km 6450 MW 88 generadores 72 e 75 MW

Desafíos: •Distancia muy grande. •Múltiples generadores de pequeño porte. •Interconexión con sistema de 230 kV flaca. Soluciones: •Eficiencia con uso de HVDC en ± 600 kV. •Uso de “controlabilidad” de HVDC •Flexibilidad usando de Back-to-Back con CCC Experiencia: •25 anos de HVDC en ± 600 kV, Furnas/Itaipu •Garabi 2200 MW Back-to-Back con CCC April 18, 2017

Slide 46

Sistema de Transmisión del Rio Madeira CPV station BtB 2x400 MW Lot A

Bipole 1 ± 600 kV line Lot D

Bipole 2 ± 600 kV line Lot G

Bipole 2 3150 MW Lot F April 18, 2017

Slide 47

Bipole 1 3150 MW Lot C

Sistema de Transmisión del Rio Madeira

The two back-to-back blocks are each rated 400 MW, although maximum power transmission into the 230kV is limited to 600 MW, at least until 2017. To overcome the problems of feeding into such a weak system, the back-to-back uses Capacitor Commutated Converters (CCC), improving not only performance related to commutation failures, but also reducing the need for shunt reactive compensation. Although not strictly necessary from a performance point of view the 500 kV side of the back-to-back also uses CCC technology. This permits use of harmonic filters with a relatively low Mvar rating on both sides of these converters. April 18, 2017

Slide 48

Sistema de Conexión Acre - Rondônia Operating modes The back-to-back has to operate in various considerably different configurations of the network: 1. 2. 3. 4. 5.

April 18, 2017

Feeding weak 230 kV network synchronous with the Brazilian network. As normal operation, but with a large gas fired thermal unit in operation locally in Porto Velho. As normal operation initially, but separating from the Brazilian System (Isolated operation). Start-up in isolated operation (Black start). Feeding 500 kV converter bus from 230 kV (Reverse power direction). Slide 49

Bipolo 1, 3150 MW Rio Madeira Transmisión, Lote C Porto Velho

Araraquara

Notes: Includes metallic return, paralleling of bipoles and of lines Lot C includes Master Control of Back-to-Back and Bipole 2

April 18, 2017

Slide 50

Conversoras da Transmissão em HVDC

CPV Bipole 1 Valve Hall Quadrivalvulas Trasformadores de tres enrolamientos April 18, 2017

Slide 51

Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C Salas de válvulas: Two winding trafo Height: 18 m Width: 53 m Depth: 25 m Three winding trafo Height: 23 m Width: 27 m Depth: 25 m

Bi-valves en Araraquara Quadri-valves en Porto Velho

April 18, 2017

Slide 52

Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C

Estacion Araraquara – Rio Madeira ± 600 kV Junho 2012 April 18, 2017

Slide 53

HVDC transformers

Largest HVDC transformer Single phase 3 winding Power: 621/310,5/310,5 MVA Connection: Yn/Y/D

April 18, 2017

Slide 54

Rio Madeira Transmission Transporte transformadores para Porto Velho, via Manaus

April 18, 2017

Slide 55

Coletora Porto Velho

Future

Lot LA-CC Lot LF-CC

April 18, 2017

Slide 56

Lot LC-CC

Rio Madeira HVDC Project Pictures from Site

April 18, 2017

Slide 57

Porto Velho Back to Back station

Rio Madeira HVDC Project Pictures from Site ABB Araraquara Converter station (right) and

Two transformers moved into position

April 18, 2017

Slide 58

Alstom station in the middle

Coletora Porto Velho

April 18, 2017

Slide 59

BtB 1, 400 MW Rio Madeira Transmissão, Lote A Teste de tipo, Octo-Valvula

CCC, Transformador de três fases, Octo-valvulas ± 50 kV

April 18, 2017

Slide 60

Rio Madeira HVDC Project Pictures from Site

April 18, 2017

Slide 61

Line Fault test

Proyectos futuros en Brasil Bipoles A & B N/SE and NE/SE Transmission Expansion

Tapajos Madeira

Transmission Line:

Belo Monte Int. N – S Parauapebas

Int NE – SE Graça Aranha

Araraquara

Assis

Voltage: Power:

7,500 MW for 2 bipoles

Expected Auction/Award:

April 18, 2017

Slide 62

2018/2019

HPP Tapajós Transmission System T. Rio

Transmission Line: Voltage: Power:

Itaipu

± 800 kV DC

Tapajos 1 & 2

Silva nia Estreito

2,100 km N/SE 1,500 km NE/SE

1,500 km BP1 2,500 km BP2 ± 800 kV DC

8,000 MW for 2 bipoles

Expected Auction/Award: 2019/2020 BP1 2020/2021 BP2

Razones para el uso de HVDC. Cuando y porque usar ellos de Corriente Continua? 1. Menos costo de inversión 2. Distancias longas 3. Perdidas menores 4. Interconexiones asíncronas 5. Flexibilidad de controle 6. Limitación de corrientes de corto 7. Medio-ambiente Sumario Mais eficiente Mais robusto Menos impacto ambiental

April 18, 2017

Slide 63

Contactos Felipe Nobre Gerente de Grid Integration Teléfono: +56 2 2471 4322 Celular: +56 9 4432 3687 E-mail: [email protected]

April 18, 2017

Slide 64