Mel Williams article on nitrates - Abbott Nutrition

1" " Nitrates,"Nitrites,"Nitric"Oxide"and"Exercise"Performance" " Melvin"H."Williams,"PhD,"FACSM" EminentScholar"Emeritus" Departmentof"Human"Movement...

10 downloads 541 Views 224KB Size
 

Nitrates,  Nitrites,  Nitric  Oxide  and  Exercise  Performance     Melvin  H.  Williams,  PhD,  FACSM   Eminent  Scholar  Emeritus   Department  of  Human  Movement  Sciences   Old  Dominion  University   Norfolk,  VA  23529-­‐0196     Introduction  

An  increasing  amount  of  research  is  focusing  on  lifestyle  behaviors  for  health   improvement,  particularly  the  prevention  of  various  chronic  diseases  such  as  coronary  heart   disease,  cancer,  and  diabetes.  Two  key  lifestyle  behaviors  involved  in  preventive  health  are   healthy  dietary  practices  and  a  proper  exercise  program.  In  a  similar  fashion,  given  the   importance  of  sport  in  today’s  society,  considerable  research  effort  is  devoted  to  sport   performance  enhancement.  Again,  proper  dietary  and  exercise  practices  are  two  of  the  key   factors  that  may  underlie  improvement  in  sport  performance.     Diet  and  exercise  training  may  enhance  both  health  and  sport  performance  in  a  variety   of  ways.  For  example,  healthy  diets  may  contain  natural  substances,  such  as  omega-­‐3  fatty   acids,  antioxidants,  and  various  phytonutrients  that  may  help  prevent  some  disease  processes   (Williams,  2010),  while  exercise  may  produce  various  cytokines  (myokines)  that  may  reduce   many  of  the  traditional  risk  factors  associated  with  development  of  chronic  diseases  (Brandt   and  Pedersen,  2010).         One  factor  common  to  both  diet  and  exercise  training  that  may  have  favorable  effects   on  both  health  and  sport  performance  involves  byproducts  of  nitrogen  metabolism,  particularly   the  role  of  dietary  nitrates  and  exercise  training  in  the  formation  of  nitric  oxide  in  the  body.       Nitrogen,  Nitrates  and  Nitrites     Nitrogen  (N2),  as  a  gas,  is  all  around  us,  constituting  about  79  percent  of  atmospheric   gases.    Nitrogen  is  an  inert  gas,  but  nitrogen-­‐fixing  bacteria  in  the  earth’s  soil  and  in  the  roots  of   plants  can  convert  nitrogen  into  nitrate  (NO3)  and  ammonium  (NH4).  Lightning  flashes  also  may   convert  nitrogen  to  nitrate  and  nitrite,  which  are  stored  in  soil.    Additionally,  agricultural   industries  can  also  convert  nitrogen  to  fertilizer,  which  contains  nitrate  and  ammonium  to   enrich  soil.  Nitrates  may  leach  from  soil  to  lakes  and  rivers,  which  may  be  sources  of  drinking   water  (Provin  and  Hossner,  2001).  As  plants  develop,  they  store  nitrogen  as  nitrates.  Plants  also   store  nitrogen  as  amino  acids,  which  are  produced  in  plants  from  nitrogen-­‐containing  sources.       Nitrogen  is  an  essential  element  for  humans.  For  example,  all  amino  acids  necessary  for   protein  formation,  which  underlies  body  structure  and  function,  contain  nitrogen,  as  does  the   DNA  in  our  genes.  Humans  obtain  nitrogen  from  various  sources,  including  nitrates  found  in   plants  and  drinking  water  and  amino  acids  in  plants  and  animal  products.  Considerable  research   1    

has  focused  on  the  positive  health  or  performance-­‐enhancing  effects  of  various  amino  acids.   Other  nitrogen  byproducts,  particularly  nitrates  and  nitrites  (NO2),  have  also  been  studied  for   similar  purposes.       As  noted,  nitrates  are  natural  inorganic  components  of  plant  foods.  Hord  and  others   (2009)  note  that  approximately  80  percent  of  human  dietary  nitrate  intake  is  derived  from   vegetable  consumption,  but  also  note  that  the  total  dietary  nitrate  intake  is  determined  by  the   type  of  vegetables  consumed,  the  levels  of  nitrate  in  the  vegetables,  and  the  amount  of   vegetables  consumed.  Table  1  provides  a  classification  of  vegetables  based  on  nitrate  content,   given  in  milligrams  per  100  grams  (3.5  ounces)  food  weight.  Other  sources  of  nitrate  in  the   human  diet  include  sodium  nitrate  as  a  preservative  in  processed  meats  and  varying  amounts  in   drinking  water.       Table  1.  Classification  of  vegetables  according  to  nitrate  content     Nitrate  Content*   Vegetables   Very  low  (<  20  mg/100  g)   Artichoke;  asparagus;  garlic;  onion;  mushroom;  pea;  pepper;   potato;  sweet  potato;  tomato   Low  (20-­‐50  mg/100  g)   Broccoli;  carrot;  cauliflower;  cucumber;  pumpkin;  chicory   Middle  (50-­‐100  mg/100g)   Cabbage;  dill;  turnip;  Savoy  cabbage   High  (100-­‐250  mg/100  g)   Celeriac  (celery  root);  Chinese  cabbage;  endive;  fennel;   kohlrabi;  leek;  parsley   Very  High  (>  250  mg/100  g)   Celery;  cress;  chervil;  lettuce;  red  beetroot;  spinach;  rucola   (arugula)   *Nitrate  content  in  milligrams  per  100  grams  of  fresh  weight     Source:  Santamaria  P.  Nitrate  in  vegetables:  toxicity,  content,  intake  and  EC  regulation.  J  Sci   Food  Agric  2006;86:10–7.     Nitrites  (NO2)  are  also  found  naturally  in  plant  foods,  but  to  a  much  lesser  degree  than   nitrates,  usually  much  less  than  a  milligram  per  100  grams  of  fresh  food.  However,  nitrite  salts,   such  as  sodium  nitrite  (NaNO2)  are  added  as  preservatives  in  various  foods,  particularly   processed  meats  such  as  bacon,  ham,  and  hot  dogs.  Fresh  meat  contains  no  nitrites.  For  a   detailed  discussion  regarding  the  nitrate  and  nitrite  content  in  foods,  please  see  the  review  by   Hord  and  others  (2009).       In  nature,  nitrates  are  readily  converted  to  nitrites  and  vice  versa.  (Argonne,  2005).  In   the  human  body,  one  of  the  functions  of  nitrates  and  nitrites  is  the  formation  of  the  gas,  nitric   oxide.     Nitric  Oxide     Nitric  oxide  (NO),  or  nitrogen  monoxide,  is  an  important  functional  molecule  in  human   physiology.  It  functions  as  a  signal  transmitter  between  body  cells  and  may  be  produced  in   2    

various  parts  of  the  body,  including  the  blood  vessels,  heart,  skeletal  and  other  tissues.  One   major  mechanism  in  the  formation  of  nitric  oxide  is  the  metabolism  of  the  amino  acid  L-­‐ arginine,  and  possibly  other  amino  acids,  by  nitric  oxide  synthase  (NOS)  enzymes  (Bescós  et  al.,   2012).  Nitric  oxide  may  also  be  formed  from  other  sources,  such  as  via  the  drugs  nitroglycerin   and  amyl  nitrite.         Investigators  have  discovered  that  dietary  nitrate  and  nitrite  also  can  serve  as  a  source   for  the  production  of  a  diverse  group  of  nitrogen  metabolites,  including  nitric  oxide,  via   nitrate/nitrite  reductases  in  tissues  (Hord,  2011).  Inorganic  nitrate  from  dietary  sources  is   converted  in  vivo  to  form  nitrite,  which  along  with  dietary  and  other  sources  of  nitrite,  is   reduced  in  vivo  into  nitric  oxide  and  other  bioactive  nitrogen  oxides  (Hord  et  al,  2009;  Carlström   et  al.,  2011).  In  brief,  after  ingestion  nitrate  is  rapidly  absorbed  in  the  upper  gastrointestinal   tract,    circulates  to  the  salivary  glands  where  it  is  extracted,  secreted  in  saliva  into  the  mouth   and  converted  to  nitrite  by  bacteria;  swallowed  nitrite  enters  the  systemic  circulation  which   then  can  be  further  reduced  in  blood  vessels,  heart,  skeletal  and  other  tissues  to  form  bioactive   NO  (Larsen  et  al.,  2010).       Nitric  oxide  may  affect  various  physiological  functions  important  to  health  and  exercise   performance.  In  particular,  nitric  oxide  is  a  potent  vasodilator.  Stamler  and  Meissner  (2001)   indicated  nitric  oxide  also  regulate  several  skeletal  muscle  functions,  such  as  force  production,   blood  flow,  mitochondrial  respiration,  and  glucose  homeostasis.  Nitric  oxide  is  rapidly  oxidized   to  form  nitrite  and  nitrate  and  thus  its  direct  detection  in  biological  systems  is  difficult.  Venous   plasma  nitrite  concentration  has  been  shown  to  be  a  marker  of  forearm  NO  production  (Allen   et  al.,  2005).  Using  such  methodology,  nitric  oxide  has  been  studied  for  its  potential  positive   health  effects  over  the  course  of  the  past  three  decades,  and  more  recently  for  its  potential   effect  on  exercise  performance.       Health  Effects  of  Dietary  Nitrates  and  Nitrites     There  appears  to  be  some  controversy  regarding  the  health  effects  of  dietary  nitrates   and  nitrites.  Some  evidence  suggests  that  they  may  be  harmful  to  health.  Thus,  some   government  regulations  may  regulate  the  amount  found  in  food  and  water.  On  the  other  hand,   some  evidence  suggests  that  they  may  be  beneficial  to  health,  and  may  underlie  the  rationale   for  proposed  healthful  diet  plans.     Possible  adverse  health  effects     In  its  Human  Health  Fact  Sheet,  the  Argonne  National  Laboratory  (2005)  indicated  that   nitrates,  a  normal  component  of  the  human  diet,  by  themselves  are  relatively  nontoxic.   However,  after  ingestion  most  nitrate  is  converted  into  nitrite,  which  may  pose  some  health   concerns.  The  stomachs  of  infants  may  convert  more  nitrate  to  nitrite,  which  may  react  with   hemoglobin  in  the  blood  and  convert  it  to  methemoglobin.  Methemoglobin  cannot  bind  with   oxygen,  which  may  lead  to  a  condition  known  as  methemoglobinemia.  An  early  sign  of  nitrite   toxicity  is  a  bluish  tinge  to  the  skin  and  lips,  the  so  called  blue  baby,  and  increasing  levels  of   methemoglobin  can  lead  to  weakness,  loss  of  consciousness,  coma,  and  death.  All  deaths  from   3    

nitrate/nitrate  poisoning  have  been  in  infants,  mainly  associated  with  contaminated  water  used   to  prepare  baby  formula  (Argonne  National  Laboratory,  2005).     Nitrites  in  the  stomach  may  also  react  with  food  proteins  to  form  N-­‐nitroso  compounds,   or  nitrosamines.  In  particular,  nitrosamines  are  formed  when  processed  meats,  which  may  be   rich  sources  of  added  nitrates  and  nitrites,  are  cooked,  especially  with  high  heat.  Nitrosamines   have  been  found  to  be  carcinogenic  in  animals,  particularly  stomach  cancer,  but  evidence  is   inconclusive  relative  to  their  potential  to  cause  cancer  in  humans  (Argonne  National   Laboratory,  2005;  Gilchrist  et  al.,  2010).     Various  governmental  groups  have  developed  toxicity  values  for  dietary  nitrate  and   nitrite  intake,  including  water  and  food  supplies,  and  particularly  for  food  additives  in  processed   meat  and  fish.  Such  groups  include  the  U.S.  Environmental  Protection  Agency  (EPA),  the  U.  S.   Food  and  Drug  Administration  (FDA),  the  U.  S.  Department  of  Agriculture  (USDA),  the  European   Union  (EU),  and  the  World  Health  Organization  (WHO).  For  example,  the  WHO  has  set  the   Acceptable  Daily  Intake  (ADI)  for  nitrate  at  3.7  mg/kg  body  weight  and  for  the  nitrite  ion  at  0.06   mg/kg  body  weight  (Hord,  et  al,  2009).       The  putative  adverse  effects  of  high  dietary  nitrate  intake  have  been  questioned  by   some  scientists.  Hord  and  others  (2009)  noted  that  although  toxic  exposures  of  nitrates  and   nitrites  have  occurred,  the  health  risks  appear  only  in  specific  subgroups  of  the  population,   particularly  infants.  In  a  recent  review,  Hord  (2011)  noted  that  current  regulatory  limits  on   nitrate  intakes,  based  on  concerns  regarding  potential  risk  of  carcinogenicity  and   methemoglobinemia,  are  exceeded  by  normal  daily  intakes  of  single  foods,  such  as  spinach,  as   well  as  various  healthful  diet  plans.  He  issued  a  call  for  regulatory  bodies  to  consider  all   available  data  on  the  beneficial  physiologic  roles  of  nitrate  and  nitrite  in  order  to  derive  rational   bases  for  dietary  recommendations.     Possible  beneficial  health  effects     Rather  than  contributing  to  adverse  health  effects,  many  scientists  contend  that  dietary   nitrate  and  nitrite,  when  converted  to  nitric  oxide,  may  exert  some  beneficial  health  effects,   such  as  prevention  of  infection,  protection  of  our  stomach,  and  prevention  of  vascular  disease   (Gilchrist  et  al.,  2010)  and  may  serve  as  essential  nutrients  for  optimal  cardiovascular  health   (Bryan  et  al.,  2007).       Most  health-­‐related  research  with  nitrate  supplementation,  either  sodium  nitrate  or   dietary  sources  of  nitrate,  has  focused  on  vascular  aspects.  Research  has  shown  that  the   Dietary  Approaches  to  Stop  Hypertension  (DASH)  diet,  which  may  be  rich  in  vegetables  and   nitrates,  is  an  effective  means  to  lower  blood  pressure  (Frisoli  et  al.,  2011).  However,  the   mechanism  underlying  this  effect  could  be  associated  with  other  aspects  of  such  a  diet,  such  as   a  high  potassium  content.  In  their  study  to  help  identify  an  underlying  mechanism,  Larsen  and   others  (2006)  found  that  sodium  nitrate  supplementation,  in  amounts  equivalent  to  150  to  250   grams  of  nitrate-­‐rich  vegetables  as  found  in  the  DASH  diet,  significantly  reduced  diastolic  blood   pressure  in  young,  normotensive  subjects.  They  concluded  the  reduced  blood  pressure  was   4    

associated  with  nitrate  supplementation  alone  and  was  similar  to  that  seen  in  DASH  studies.   Dietary  nitrate  content  may  also  underlie  the  purported  health  benefits  of  the  Mediterranean   diet.  Although  the  vasodilation  effect  of  dietary  nitrate,  by  increasing  nitric  oxide,  is  thought  to   underlie  the  reduction  in  blood  pressure,  Larsen  and  others  (2006)  note  that  the  exact   mechanism  behind  the  blood  pressure–lowering  effect  of  nitrate  needs  to  be  clarified  in  future   studies.     Exercise  Training  and  Nitric  Oxide     One  effect  of  exercise  training  may  lead  to  an  increase  in  nitric  oxide  production,  an   effect  that  may  be  related  to  improvement  in  both  health  and  exercise  performance.     Health  aspects   Proper  exercise  training  is  associated  with  many  resultant  health  benefits,  particularly   prevention  of  diseases  of  the  cardiovascular  system.  One  such  health  benefit  is  a  reduction  in   blood  pressure;  high  blood  pressure  is  one  of  the  primary  risk  factors  for  coronary  heart   disease.  Scientific  reviews  have  shown  reduced  blood  pressure  following  either  aerobic  (Kelley   and  Kelley,  2008)  or  dynamic  resistance  (Cornelissen  et  al.,  2011)  exercise  training.       One  possible  mechanism  underlying  this  blood  pressure-­‐lowering  effect  is  an  exercise-­‐ induced  increased  production  and  activity  of  nitric  oxide.  For  example,  several  comparative   epidemiological  studies  have  shown  that  endurance  athletes,  including  marathon  runners,  had   higher  nitric  oxide  production  and  basal  levels  compared  to  sedentary  subjects  (Rodriguez-­‐Plaza   et  al.,  1997;  Vassalle  et  al.,  2003).    Several  experimental  studies  have  shown  that  both  mild   aerobic-­‐endurance  exercise  training  and  short-­‐term  resistance  training  may  increase  NO   production  in  previously  healthy,  sedentary  older  humans,  which  the  investigators  suggest  may   have  antihypertensive  effects  and  beneficial  effects  on  the  cardiovascular  system  (Maeda  et  al.,   2006;  Maeda  et  al.,  2004).  Nitric  oxide  production  decreases  with  aging,  which  may  be  one   factor  underlying  the  increased  risk  of  cardiovascular  disease  in  the  elderly.    Calvert  indicated   that  exercise  can  increase  activity  of  endothelial  nitric  oxide  synthase  resulting  in  an  increase  in   nitric  oxide  levels  (Calvert,  2011)  and  also  noted  that  although  it  is  still  unclear  how  exercise   protects  the  heart,  it  is  apparent  that  endothelial  nitric  oxide  plays  a  role.  (Calvert  et  al.,  2011).         Exercise  performance  aspects     Proper  exercise  training  is  essential  to  enhancement  of  sport  performance,  and   numerous  associated  physiological,  psychological,  and  biomechanical  mechanisms  may  underlie   such  improvement.  One  such  physiological  mechanism  may  be  an  increase  in  nitric  oxide.         Research  indicates  that  exercise  increases  nitric  oxide  production.  Studies  have  shown   that  eight  weeks  of  mild  aerobic  exercise  training  could  increase  the  plasma  markers  of  nitric   oxide  production  In  both  younger  and  older  individuals,  but  these  levels  decreased  to  the  base   levels  following  eight  weeks  of  detraining  (Maeda  et  al.,  2004;  Maeda  et  al.,  2001;  Wang,  2005).   Short-­‐term  resistance  training  also  has  been  shown  to  increase  nitric  oxide  production  in   healthy  older  men  (Maeda  et  al.,  2006).   5    

    Some  investigators  theorize  that  nitric  oxide  may  be  a  major  factor  supporting   improvement  in  exercise  performance  (Gilchrist  et  al.,  2010).  Increased  markers  of  nitric  oxide   support  an  effect  to  promote  vasodilation  and  increase  blood  supply  to  exercising  muscle,   improving  exercise  performance  in  patients  with  peripheral  arterial  disease  (PAD),  a  condition   in  which  a  failure  to  adequately  supply  blood  and  oxygen  to  active  muscles  presents  as   claudication  pain  during  simple  exercise  tasks,  such  as  walking  (Allen  et  al.,  2010;  Kenjale  et  al.,   2011).  Other  studies  with  healthy  subjects  reported  (1)  that  increases  in  markers  of  nitric  oxide   synthesis  during  exercise  were  positively  correlated  with  exercise  performance  and  that  an   impaired  increase  in  plasma  nitrite  may  limit  exercise  capacity  (Rassaf  et  al.,  2007),  (2)  that   there  is  a  favorable  effect  of  plasma  nitrite  concentration  on  high-­‐intensity  endurance  exercise   (Dreissigacker  et  al.,  2010),  and  (3)  that  subjects  who  could  exercise  hardest  in  a  treadmill   VO2peak  test  also  produced  the  most  nitric  oxide  (Allen  et  al.,  2005).  Although  a  vigorous   exercise  training  program  may  be  a  very  effective  means  to  increase  nitric  oxide  production,   some  athletes  may  attempt  similar  increases  via  other  means  in  attempts  to  go  beyond  training   and  obtain  a  competitive  edge.       Supplementation  Protocols  to  Enhance  Nitric  Oxide  Production  and  Exercise  Performance     As  noted  below,  numerous  studies  have  evaluated  the  effects  of  various  means  in   attempts  to  increase  nitric  oxide  production  and  concomitantly,  enhance  exercise  or  sports   performance.  Most  studies  cited  have  used  well  designed  experimental  methods,  including   appropriate  dosages  and  double-­‐blind,  placebo,  crossover  protocols.           Given  the  potential  performance-­‐enhancement  effects  of  nitric  oxide,  an  increase  in  its   production  during  sports  competition  could  be  beneficial  to  many  athletes.  Although  the  role  of   nitric  oxide  was  unknown  at  the  time,  various  reports  indicate  extensive  use  of  ergogenic   substances  by  athletes,  including  the  nitric  oxide  producing  drug  nitroglycerin,  in  the  late  19th   century  (Ferro,  2007;  Mayes,  2010).  Fast  forward  to  the  21st  century  in  which  recent  reports   indicate  nitric  oxide  dietary  supplements  are  popular  within  the  sport  and  bodybuilding   communities  (Bloomer  et  al.,  2011;  Bloomer  et  al.,  2010).  Maughan  and  others  (2011)  recently   noted  that  the  use  of  both  nitrate  and  arginine  is  growing.       Various  substances  have  been  used  to  increase  production  of  nitric  oxide  in  humans.   Drugs  such  as  nitroglycerin  and  amyl  nitrate  are  potent  vasodilators  via  nitric  oxide  production.   Although  such  drugs  may  be  purchased  on  the  Internet,  their  use  may  pose  some  serious  health   threats  and  will  not  be  discussed  relative  to  their  ergogenic  potential.    Inhalation  of  nitrogen   gas  preparations  may  also  increase  nitric  oxide  production,  but  such  use  also  will  not  be   discussed.  Inorganic  nitrate  and  nitrite  salts  may  also  increase  nitric  oxide  levels.  Both  salts  may   be  used  as  food  additives  and  both  can  be  classified  as  either  a  drug  or  a  food  depending  on   how  they  are  administered  (Allen,  2011).  Several  studies  have  used  sodium  nitrate  to  evaluate   the  effect  of  nitric  oxide  on  exercise  performance,  and  the  results  will  be  presented  below.   However,  as  noted  in  the  following  section  dealing  with  cautions  in  using  nitric  oxide-­‐producing   agents,  use  of  such  salts  is  not  recommended.  Dietary  supplements,  particularly  L-­‐arginine,  and   6    

food  sources  of  nitrates  have  also  been  studied  as  a  means  to  increase  nitric  oxide  and  enhance   exercise  performance,  and  such  protocols  constitute  the  majority  of  current  research  studies.     Nitrate  Salts       Nitrate  salt  supplementation  has  been  studied  for  its  ergogenic  potential,  as  have  some   new  salt  preparations  marketed  as  dietary  supplements.  In  one  study,  cyclists  consumed   sodium  nitrate  (10  mg/kg  body  weight)  prior  to  an  ergometer  test  consisting  of  four  6-­‐minute   submaximal  workloads  with  increasing  intensity  and  then,  after  a  short  rest  period,  an   incremental  exercise  test  until  exhaustion.    The  supplement  increased  plasma  nitrate  and   nitrite,  but  significantly  reduced  peak  oxygen  uptake  and  the  ratio  between  oxygen   consumption  and  power  at  maximal  intensity.  This  reduction  of  oxygen  consumption  occurred   without  changes  in  the  time  to  exhaustion  (Bescós  et  al.,  2011).  In  another  study,  subjects   received  dietary  supplementation  with  sodium  nitrate  for  two  days  before  undertaking  maximal   exercise  tests,  consisting  of  an  incremental  exercise  to  exhaustion  with  combined  arm  and  leg   cranking  on  two  separate  ergometers.  Similar  to  the  preceding  study,  supplementation  was   associated  with  a  decrease  in  maximal  oxygen  uptake  with  a  trend  towards  an  increase  in   exercise  time  to  exhaustion  (Larsen  et  al,  2010).  As  noted  in  a  following  discussion,  the  findings   of  these  two  studies  may  be  associated  with  enhanced  performance.       L-­‐arginine  supplements   As  noted  previously,  L-­‐arginine  and  other  amino  acids  may  serve  as  substrate  for  the   production  of  nitric  oxide  in  the  body.  Most  dietary  supplements  promoting  nitric  acid   production  contain  L-­‐arginine  (Bloomer  et  al.,  2010).  Citrulline,  another  amino  acid,  is  taken  up   by  the  kidney  and  metabolized  to  generate  arginine.    Hickner  and  others  (2006)  noted  that   citrulline  supplementation  increases  plasma  arginine  levels  to  a  higher  level  than  arginine   supplementation.       Positive  effect  on  performance  In  an  earlier  review,  Cheng  and  Baldwin  (2001)  reported   that  oral  arginine  supplementation  in  several  small  studies  has  been  shown  to  improve  exercise   ability  in  coronary  heart  disease  patients,  but  noted  that  larger,  well-­‐designed  studies  are   required  to  confirm  its  effect  before  therapy  can  be  routinely  recommended.  More  recent   studies  have  shown  that  L-­‐arginine  supplementation  could  enhance  exercise  performance  in   patients  with  chronic  stable  heart  failure  (Doutreleau  et  al.,  2006)  and  in  patients  following  a   heart  transplant  (Doutreleau  et  al.,  2010).           Research  findings  are  scant  regarding  improved  exercise  performance  in  healthy   subjects.  Bailey  and  others  (2010A)  reported  that  L-­‐arginine  supplementation  (6  grams)  one   hour  prior  to  a  series  of  moderate-­‐  and  severe-­‐intensity  cycling  exercise  bouts    reduced  oxygen   uptake  and  increased  the  time  to  exhaustion  in  the  severe-­‐intensity  exercise  tests.  They   concluded  that  L-­‐arginine  supplementation  elicited  positive  effects  on  exercise  performance   similar  to  those  associated  with  dietary  nitrate  supplementation,  as  discussed  below.      

7    

No  effect  on  performance  Most  studies  report  no  ergogenic  effect  of  L-­‐arginine   supplementation  on  various  tests  of  aerobic  endurance,  anaerobic  performance,  or  resistance   exercise  in  patients  and  healthy  subjects.       Relative  to  aerobic  exercise,  Wilson  and  others  (2007)  found  that  long  term  L-­‐arginine   supplementation  (3  grams  daily  of  6  months)  did  not  improve  treadmill  NO  production  or   walking  performance  in  patients  with  peripheral  arterial  disease.  McConell  and  others  (2006)   actually  infused  arginine  into  endurance-­‐trained  cyclists  during  a  cycling  exercise  protocol,  and   reported  no  effect  in  a  15-­‐minute  maximal  cycling  time  trial  following  two  hours  of  cycling  at  72   percent  of  maximal  oxygen  uptake.  In  another  endurance  cycling  study,  Abel  and  others  (2005)   reported  that  arginine  aspartate  supplementation  had  no  effect  on  cycling  endurance  to   exhaustion.           Several  studies  have  found  no  effect  on  tests  of  anaerobic  exercise  performance.  Olek   and  others  (2010)  studied  the  effect  of  a  single  2-­‐gram  dose  of  arginine  prior  to  three  30-­‐ second  all-­‐out  supramaximal  Wingate  Anaerobic  Tests,  but  found  no  improvement  in  exercise   performance  compared  to  the  placebo  trial.  Liu  and  others  (2009)  evaluated  the  effect  of  L-­‐ arginine,  6  grams  daily  for  3  days,  on  performance  by  well-­‐trained  male  judo  athletes  in  an   intermittent  cycle  ergometer  anaerobic  exercise  test.  Although  plasma  L-­‐arginine  levels   increased,  there  was  no  effect  on  plasma  nitrate  or  nitrite  or  on  peak  and  average  power  in  the   exercise  test.       Studies  also  have  reported  no  ergogenic  effect  of  L-­‐arginine  supplementation  on   resistance  exercise  tests.  Altars  and  others  (2012)  evaluated  the  acute  effects  of  L-­‐arginine   supplementation  (6  grams)  consumed  80  minutes  before  tests  of  biceps  strength  performance.   Although  muscle  blood  flow  increased  to  the  exercising  muscles,  there  was  no  effect  of  the   supplement  on  nitric  oxide  or  various  measures  of  strength  performance,  such  as  peak  torque   and  total  work.         The  majority  of  studies  indicate  that  L-­‐arginine  supplementation  does  not  enhance   exercise  performance,  and  the  major  reason  may  be  that  while  L-­‐arginine  supplementation  may   increase  plasma  levels  of  L-­‐arginine,  supplementation  has  rather  consistently  been  shown  to   not  increase  nitric  oxide  or  blood  flow  to  the  exercising  muscle  (Bescós  et  al.,  2009;  Tang  et  al.,   2011;  Willoughby  et  al.,  2011).         Negative  effect  on  performance  Some  studies  even  suggest  that  L-­‐arginine  or  citrulline   supplementation  may  impair  endurance  exercise  performance.  Buchman  and  others  (1999)   provided  arginine  or  a  placebo  to  marathon  runners  and  speculated  arginine  may  be  ergolytic   as  the  predicted  times  of  the  runners  receiving  arginine  were  slower  than  those  receiving  the   placebo.    Hickner  and  others  (2006)  reported  that    citrulline    supplementation  had  no  effect  on   treadmill  run  time  to  exhaustion,  and  results  of  their  study  suggested  that  the  supplement   actually  impaired    run  time  to  exhaustion.       Dietary  sources  of  nitrate   8    

  As  noted  previously,  various  vegetables  may  be  excellent  sources  of  dietary  nitrate.  In   particular,  beetroot  juice  has  been  studied  for  its  performance-­‐enhancing  potential.  Beetroot  is   the  term  used  in  England  for  the  vegetable  we  know  in  the  United  States  as  the  red  beet.  Doses   used  in  studies  approximate  300-­‐500  milligrams  of  nitrate,  an  amount  found  in  about  500   milliliters  of  beetroot  juice,  and  there  is  no  evidence  that  higher  amounts  are  more  effective   (Lundberg  et  al.,  2011).  Doses  used  in  studies  may  be  expressed  as  milligrams  or  millimoles.   One  millimole  of  nitrate  is  the  equivalent  of  62  milligrams,  so  5-­‐8  millimoles  would  be  the   approximate  equivalent  of  300-­‐500  milligrams  of  nitrate.  In  several  studies,  nitrate-­‐depleted   beetroot  juice  was  used  as  the  placebo.         Various  study  protocols  have  been  used  to  evaluate  the  ergogenic  effect  of  nitrate   supplementation,  including  acute  (several  hours)  and  chronic  (several  days)  supplementation   time  frames  before  testing,  varying  dosages,  multiple  dependent  variables,  varying  levels  of   exercise  intensity,  and  specific  exercise  tasks.       Increase  of  nitric  oxide  Numerous  studies  have  shown  that  dietary  nitrate  supplementation,   usually  in  the  form  of  beetroot  juice,  increases  plasma  nitrite  concentration,  a  marker  for  nitric   oxide  (Bailey  et  al.,  2009;  Lansley  et  al.,  2011A;  Lansley  et  al.,  2011B;  Vanhatalo  et  al.,  2010).   Such  increases  were  noted  after  both  acute  and  chronic  supplementation.       Reduced  oxygen  cost  of  exercise  One  of  the  most  consistent  findings  from  studies  is  a  reduced   oxygen  cost  of  exercise  or  increased  oxygen  efficiency  following  either  acute  or  chronic  dietary   nitrate  supplementation.  Relative  to  acute  supplementation,  Kenjale  and  others  (2011)   reported  that  beetroot  supplementation  three  hours  prior  to  testing  reduced  the  fractional   oxygen  extraction  of  the  gastrocnemius  muscle  during  submaximal  walking  in  patients  with   peripheral  arterial  disease.  Vanhatalo  and  others  (2010)  reported  significant  reductions,  about   4  percent,  in  the  oxygen  cost  of  moderate-­‐intensity  cycling  exercise  following  both  acute  (2.5   hours  prior  to  testing)  and  chronic  (daily  for  5  and  15  days)  supplementation.  These   investigators  concluded  that  dietary  nitrate  supplementation  acutely  reduces  the  oxygen  cost   of  submaximal  exercise  and  that  these  effects  are  maintained  for  at  least  15  days  if   supplementation  is  continued.  Other  studies  support  similar  effects  with  chronic   supplementation  of  beetroot  juice.  Lansley  and  others  (2011B)  reported  a  reduced  oxygen  cost   of  treadmill  walking,  moderate-­‐intensity  running,  and  severe-­‐intensity  running  following  4-­‐5   days  of  supplementation.  Cermak  and  others  (2012)  reported  a  significant  reduction  in  oxygen   consumption  in  cyclists  during  60  minutes  of  submaximal  cycling  following  6  days  of   supplementation,  and  in  two  studies  Bailey  and  others  (2010B;  2009)  reported  a  reduction  in   the  oxygen  cost  of  low-­‐,  moderate-­‐,  and  high-­‐intensity  exercise,  involving  either  cycling  or  knee   extension  exercise,  following  4-­‐6  days  of  supplementation.  In  a  competitive  cycling  time-­‐trial   study,  Lansley  and  others  (2011A)  reported  that  the  oxygen  uptake  values  were  not  significantly   different  between  the  dietary  nitrate  supplement  and  placebo  during  any  stage  of  the  trial,  but   the  power  outputs  were  increased,  suggestive  of  improved  oxygen  efficiency.  In  yet  another   study,  Lansley  and  others  (2011B)  concluded  that  the  positive  effects  of  six  days  of  beetroot   supplementation  on  the  physiological  responses  to  exercise,  primarily  a  decrease  in  the  oxygen   cost  of  walking  and  running,  can  be  ascribed  to  the  high  nitrate  content  per  se.   9    

  Increased  performance    As  noted  above,  ingestion  of  sodium  nitrate  salts  in  the  equivalence  of   100-­‐300  grams  of  nitrate-­‐rich  vegetables  trended  towards  an  increase  in  exercise  time  to   exhaustion  (Larsen  et  al.,  2010).    Research  with  nitrate-­‐rich  beetroot  juice  supports  this  linkage.       Time  to  exhaustion  As  a  measure  of  exercise  performance,  many  studies  use  tests  that   involve  exercise  to  exhaustion,  such  as  the  subject  can  no  longer  continue  to  exercise  at  a  given   rate  or  stops  because  of  complete  fatigue.  Using  such  protocols,  investigators  have  reported   significant  improvement  in  exercise  tests  to  exhaustion  following  beetroot  supplementation.   Kenjale  and  others  (2011)  reported  that  patients  with  peripheral  arterial  disease  improved  peak   walking  time  by  17  percent  in  a  cardiopulmonary  exercise  test  three  hours  after   supplementation.    Lansley  and  others  (2011B)  reported  improved  treadmill  run  time  to   exhaustion  in  a  severe-­‐intensity  treadmill  test  after  4  and  5  days  of  supplementation.    Bailey   and  others  (2010B;  2009)  utilized  various  protocols  involving  high-­‐intensity  exhaustive  knee-­‐ extension  and  cycling  tests  and  found  that  4-­‐6  days  of  supplementation  improved  exercise  time   to  exhaustion.  Vanhatalo  and  others  (2011),    studied  the  effect  of  dietary  nitrate   supplementation  under  conditions  of  hypoxia  and  found  that  one  day  after  supplementation,   performance  in  a  knee-­‐extension  test  to  the  limits  of  tolerance  under  hypoxic  conditions  was   restored  to  values  observed  in  normoxia.  In  their  study  of  both  acute  and  chronic   supplementation  protocols,  Vanhatalo  and  others  (2010)  reported  that  supplementation   increased  both  work  rate  and  peak  power  in  a  ramp  incremental  cycle  ergometer  exercise   protocol.       Sport  performance-­‐specific  research  When  conducting  research  specific  to  exercise  or   sport  performance,  scientists  generally  recommend  consideration  of  two  factors.  One,  the   exercise  task  should  be  as  applicable  as  possible  to  actual  sport  performance,  and  two,  subjects   should  be  trained  in  the  sport  or  exercise  task.  Although  exercise  tests  to  exhaustion  may  be   useful  to  study  the  effects  of  performance-­‐enhancing  substances,  they  do  not  replicate  actual   sports  performance.  A  more  relevant  approach  involves  sport-­‐like  competitions,  such  as  time   trials  under  laboratory  conditions,  which  are  attempts  to  mimic  actual  types  of  sport   performance.  Relative  to  the  training  status  of  subjects  in  studies  of  dietary  nitrate   supplementation,  Bescós  and  others  (2012)  noted  that  most  studies  showing  enhancement  of   exercise  performance  have  used  untrained  males  as  subjects.       However,  two  studies  using  a  simulated  sport  competition  protocol  and  trained  cyclists   have  reported  performance-­‐enhancing  effects  of  both  acute  and  chronic  beetroot  juice   supplementation.  In  one  study,  nine  club-­‐level  competitive  male  cyclists  consumed  beetroot   juice  2.5  hours  before  testing.  Compared  to  the  placebo  trial,  the  cyclists  significantly  improved   both  power  output  and  performance  in  both  a  4-­‐kilometer  and  16.1-­‐kilometer  cycling  time  trial.   Oxygen  consumption  was  similar  during  the  stages  of  the  time  trial,  suggesting  beetroot  juice   improves  cycling  economy  (Lansley  et  al.,  2011A).  In  the  second  study,  trained  male  cyclists   consumed  beetroot  juice  for  6  days,  and  on  test  day  performed  60  minutes  of  submaximal   cycling  followed  by  a  10-­‐kilometer  time  trial.  Similar  to  the  acute  supplementation  study,  both   power  output  and  time-­‐trial  performance  were  significantly  improved  with  beetroot   10    

supplementation,  although  the  performance  difference  between  the  two  trials  was  relatively   small  (Cermak  et  al.,  2012).         Collectively,  both  sets  of  these  data  provide  rather  strong  support  for  a  performance-­‐ enhancing  effect  of  dietary  nitrate  supplementation.       Possible  Mechanisms  of  Nitrate  Supplementation  on  Performance  Enhancement       Dietary  nitrate  supplementation,  as  noted,  may  be  related  to  favorable  effects  on  both   cardiovascular  health  and  exercise  performance.  Machha  and  Schechter  (2011)  note  that   multiple  mechanisms  may  underlie  such  beneficial  effects,  and  such  mechanisms  may  be   applicable  to  both  health  and  exercise  performance.  Specific  to  exercise  performance,  Bescós   and  others  (2012)  suggested  that  improvements  following  supplementation  with  dietary   nitrates  may  be  related  to  the  increase  in  nitric  oxide  production  and  subsequent  enhancement   of  oxygen  and  nutrient  delivery  to  active  muscles.  As  noted  below,  increased  oxygen  delivery   may  be  one  of  the  key  mechanisms,  but  research  relative  to  a  performance-­‐enhancing  effect  of   nutrient  delivery  is  very  limited,  and  that  which  is  available  is  not  supportive.  For  example,   Cermak  and  others  (2012)  reported  no  effect  of  dietary  nitrate  supplementation  on  whole-­‐body   fuel  selection  and  plasma  glucose  or  lactate  concentrations  during  a  10-­‐kilometer  cycling  time   trial.  However,  Bailey  and  others  (2010B)  reported  a  slight  shift  in  substrate  utilization  toward  a   relatively  greater  use  of  carbohydrate,  possibly  attributed  to  an  nitric  oxide-­‐mediated  increase   in  muscle  glucose  uptake,  which  could  reduce  oxygen  uptake.  They  recommend  additional   research  to  evaluate  this  possibility.       Larsen  and  others  (2010),  noting  the  effect  of  dietary  nitrate  supplementation  to  reduce   the  oxygen  cost  of  exercise  during  maximal  exercise  suggested  that  two  separate  mechanisms   are  involved:  one  that  reduces  oxygen  uptake  and  another  that  improves  the  energetic  function   of  the  working  muscles.         The  vasodilative  effect  of  dietary  nitrate  appears  to  be  a  major  factor  involved  in   the  reduction  of  oxygen  uptake  during  exercise.  Several  factors  may  be  involved.  Jones  and   others  (2011)  note  that  the  VO2  slow  component,  a  slowly  developing  increase  in  VO2  during   constant-­‐work-­‐rate  exercise  performed  above  the  lactate  threshold,  represents  a  progressive   loss  of  skeletal  muscle  contractile  efficiency  and  is  associated  with  the  fatigue  process.  They   note  that  dietary  nitrate  supplementation  can  reduce  the  magnitude  of  the  VO2  slow   component  and  reduce  muscle  fatigue  development  either  by  improving  muscle  oxidative   capacity  or  by  enhancing  bulk  muscle  oxygen  delivery.  The  increased  oxygen  delivery  may   enhance  oxygen  distribution  in  the  exercising  muscle.  Kenjale  and  others  (2011)  reported  that   gastrocnemius  tissue  fractional  oxygen  extraction  was  lower  during  walking  exercise  following   beetroot  supplementation  in  individuals  with  peripheral  arterial  disease.  One  possibility  is  an   increased  oxygen  delivery  to  the  slow-­‐twitch  muscle  fibers  in  the  gastrocnemius,  as  contrasted   to  the  fast-­‐twitch  fibers.  Slow  twitch  muscle  fibers  can  use  oxygen  more  efficiently  than  fast   twitch  muscle  fibers.  Another  possibility  to  reduce  oxygen  uptake  during  exercise  is  to  reduce   the  amount  consumed  by  the  heart  muscle.  Drechsler-­‐Parks  (1995)  found  that  inhaled  air  with   11    

nitrite  induced  a  decrease  in  cardiac  output  during  exercise,  which  would  reduce  the  work  of   the  heart  and  oxygen  consumption.         An  improvement  in  muscle  energy  production  efficiency  during  exercise  could  lead  to  a   reduction  in  oxygen  uptake.  Although  Lansley  and  others  (2011B)  reported  no  change  in   mitochondrial  oxidative  capacity  during  exercise  following  several  days  of  dietary  nitrate   supplementation,  Larsen  and  others  (2011)  reported  improved  oxidative  phosphorylation   efficiency  in  skeletal  muscle  mitochondria  which  correlated  to  the  reduction  in  oxygen  cost   during  exercise.  They  noted  that  after  nitrate  supplementation,  skeletal  muscle  mitochondria   displayed  an  improvement  in  oxidative  phosphorylation  efficiency  (P/O  ratio),  which  was   correlated  with  the  reduction  of  oxygen  cost  during  exercise.    This  finding  suggests  a  more   efficient  production  of  ATP  for  muscle  contraction  from  a  given  amount  of  oxygen.    They   concluded  that  dietary  nitrate  has  profound  effects  on  basal  mitochondrial  function.  However,   although  Bailey  and  others  (2010B)  indicated  results  from  their  study  are  not  able  to  exclude   the  possibility  that  nitrate  supplementation  increases  the  P/O  ratio,  they  suggest  that  the   reduced  oxygen  cost  of  exercise  is  consequent  to  an  improved  coupling  between  ATP  hydrolysis   and  skeletal  muscle  force  production,  which  would  result  in  areduced  ATP  cost  of  muscle  force   production.  The  total  ATP  turnover  rate  was  estimated  to  be  less  for  both  low-­‐intensity  and   high-­‐intensity  exercise  following  dietary  nitrate  supplementation.  Additionally,  Vanhatalo  and   others  (2011)  noted  that  compared  to  the  placebo  trial  under  hypoxic  conditions,  nitrate   supplementation  had  favorable  effects  on  phosphocreatine  recovery  time  and  muscle  pH,   factors  that  could  contribute  to  enhanced  exercise  performance.  The  authors  noted  that  nitrate   supplementation  in  hypoxia  restored  exercise  tolerance  and  oxidative  function  to  values   observed  in  normoxia.  Overall,  these  findings  suggest  dietary  nitrate  supplementation  could   enhance  muscle  energy  efficiency  during  exercise,  which  could  lead  to  a  reduction  in  oxygen   consumption.         Other  factors  may  be  involved  as  well.  The  central  fatigue  hypothesis  suggests  that   neural  factors,  primarily  the  brain,  are  involved  in  fatigue.  Presley  and  others  (2011)  measured   cerebral  perfusion  in  older  adults  and  concluded  that  the  results  suggest  dietary  nitrate  may  be   useful  in  improving  regional  brain  perfusion  in  critical  brain  areas  known  to  be  involved  in   executive  functioning.  Such  an  effect  may  be  involved  in  a  reduction  of  central  fatigue  and  an   improvement  in  exercise  performance.         Additional  research  is  recommended  to  help  ascertain  the  mechanism  underlying  the   reduced  oxygen  cost  of  exercise  following  nitrate  supplementation,  particularly  with  beetroot   juice.  Bailey  and  others  (2011B)  note  that  beetroot  juice  is  also  rich  in  antioxidants  and  phenols   and  indicate  it  is  possible  that  these  compounds  may  act  independently  or  synergistically  with   nitrate.     Considerations  on  Use  of  Nitrates  for  Performance  Enhancement  in  Sport     Lundberg  and  others  (2011)  note  that  although  the  true  performance-­‐enhancing  effects   of  nitrate  are  yet  to  be  proven  under  actual  competitive  conditions,  it  is  clear  from  internet   12    

forums,  articles,  and  discussions  within  the  sports  community  that  the  use  of  nitrate   supplementation  currently  is  spreading  rapidly  among  athletes.  They,  along  with  others,   suggest  caution  in  the  use  of  various  nitrate  or  nitrite  preparations.       Drugs  and  salts   Lundberg  and  others  (2011)  note  that  drugs  that  contain  organic  nitrates  and  nitrites,   such  as  nitroglycerine  and  amyl  nitrite,  are  extremely  potent  vasodilators  and  unintentional   overdosing  may  lead  to  fatal  vascular  collapse.  At  this  time,  they  also  advise  athletes  to  refrain   from  the  uncontrolled  use  of  nitrate  and  nitrite  salts  as  dietary  supplements,  indicating  that   while  the  acute  toxicity  of  nitrate  is  very  low  or  absent,  any  confusion  leading  to  a  large   unintentional  intake  of  nitrite  or  organic  nitrates  and  nitrites  is  potentially  life  threatening.  For   example,  consuming  various  doses  of  nitrite  found  in  dietary  supplements  in  conjunction  with   vasodilation  erectile  dysfunction  drugs,  such  as  Viagra  and  Cialis,  may    cause  health  problems   (Allen,  2011).  If  you  use  any  drugs,  check  with  your  physician  prior  to  use  of  such  dietary   supplements.  Individuals  with  various  health  problems,  such  as  peripheral  arterial  disease,  may   benefit  from  nitrate  or  nitrite  salt  supplementation,  but  also  should  consult  with  their  physician   regarding  such  use  with  exercise.      

Dietary  supplements     As  noted  previously,  most  “nitric  oxide”  dietary  supplements  marketed  to  athletes   contain  L-­‐arginine  as  the  purported  active  ingredient,  but  there  is  little  scientific  evidence  that   L-­‐arginine  supplementation  enhances  exercise  performance.  Other  supplements  may  contain   different  ingredients  marketed  to  deliver  "real  nitric  oxide"  to  the  circulation,  but  research  with   such  supplements  is  currently  limited.  One  study  with  resistance-­‐trained  men  reported  a  small,   but  statistically  insignificant,  effect  of  such  a  supplement  on  increasing  circulating  nitrate/nitrite   within  the  1-­‐hour  postingestion  period,  but  there  was  no  effect  on  various  hemodynamic   variables  (Bloomer  et  al.,  2010).  Additional  research  is  merited  with  such  “nitric  oxide”  dietary   supplements.       Food  sources  of  nitrate   In  general,  most  investigators  indicate  that  there  is  very  little  harm,  and  possibly  some   health  benefits,  associated  with  consumption  of  healthful  foods,  particularly  vegetables  and   vegetable  juices,  rich  in  nitrates  (Allen,  2011;  Lundberg  et  al.,  2011;  Machha  and  Schechter,   2011).  One  key  research  group  notes  that  the  dose  of  nitrate  that  reduces  oxygen  cost   efficiently  is  in  the  range  300–500  milligrams  and  there  is  no  evidence  that  higher  doses  would   increase  the  effects  further  (Lundberg  et  al.,  2011).  However,  these  investigators  indicate    a   potential  risk  exists  with  nitrate-­‐containing  vegetable  juice  if  stored  inappropriately.   Contamination  of  the  beverage  by  nitrate-­‐reducing  bacteria  may  then  occur,  leading  to   substantial  nitrite  accumulation  over  time.      

Possible  contraindications  of  nitrate  supplementation       Although  hypothetical  at  this  point,  dietary  nitrate  supplementation  may  be  related  to   several  concerns  for  athletes.  Low  serum  iron  levels,  even  to  the  level  of  iron  deficiency   anemia,  appear  to  be  more  prevalent  in  athletes  than  in  nonathletes,  especially  younger  female   13    

athletes;  although  it  is  likely  that  dietary  choices  explain  much  of  a  negative  iron  balance,   evidence  also  exists  for  increased  rates  of  red  cell  iron  and  whole-­‐body  iron  turnover  (Beard   and  Tobin,  2000).  Increased  production  of  nitric  oxide  also  may  be  involved.    For  example,   individuals  who  live  at  high  altitude  have  a  10-­‐fold-­‐higher  circulating  concentration  of  bioactive   nitric  oxide  products  than  their  sea-­‐level  controls,  but  their  red  blood  cells  contain  lower   concentrations  of  iron  complexes  (Erzurum  et  al.,  2007).  In  a  study  with  rats  engaged  in   exercise  training  over  the  course  of  12  months,  Xiao  and  Qian  (2000)  reported  that  strenuous   exercise  may  lead  to  an  increase  in  plasma  nitric  oxide  concentrations  as  well  as  a  low  iron   level,  and  suggested  the  possibility  that  the  increased  nitric  oxide  production  might  be   associated  with  the  development  of  the  lower  iron  status  in  exercise.  A  long-­‐term  study  with   humans  may  be  of  interest.         An  increase  in  nitric  oxide  from  dietary  nitrate  may  be  particularly  important  in   conditions  of  low  oxygen  availability  (Jones,  2011).  Thus,  as  nitrate  supplementation  may  be   beneficial  under  conditions  of  hypoxia,  such  use  may  be  important  to  athletes  training  and   competing  at  altitude.  However,  caution  may  be  advised.  In  a  case  study,  an  elite  mountaineer   reported  severe  acute  mountain  sickness  and  ataxia  during  exercise  at  high  altitude.    The   mountaineer  was  using  transdermal  nitroglycerin  patches  aimed  to  prevent  frostbite.  Use  of   nitroglycerin  for  this  purpose  is  off-­‐label,  and  its  safety  has  not  been  assessed.  The  authors   noted  that  a  relation  between  nitrate-­‐induced  cerebral  vasodilation  and  high  altitude  cerebral   edema  is  theoretically  possible  on  a  pathophysiological  basis  (Mazzuero  et  al.,  2008).  This   incident  occurred  at  an  altitude  of  8,000  meters,  which  is  not  a  usual  venue  for  major  sports   competition,  and  it  involved  the  use  of  a  drug,  not  a  food  supplement.  Nevertheless,  caution  in   the  use  of  nitrates  by  athletes  at  altitude  may  be  advised.       Practical  advice   Andrew  M.  Jones,  an  expert  in  nitrate  supplementation  research,  offers  some  practical   advice  for  athletes,  and  here  is  a  summarization  of  some  of  his  key  points  (Jones,  2011).     • The  available  evidence  suggests  that  dietary  supplementation  with  approximately  300-­‐ 450  milligrams  of  nitrate  results  in  a  significant  increase  in  plasma  nitrite  concentration   and  associated  physiological  effects     • This  dose  can  be  achieved  through  the  consumption  of  0.5  liter  of  beetroot  juice,  or  an   equivalent  high-­‐nitrate  foodstuff.     • Following  ingestion,  plasma  nitrite  concentration  typically  peaks  within  2-­‐3  hours  and   remains  elevated  for  a  further  6-­‐9  hours  before  declining  towards  baseline.  Thus,   athletes  should  consume  the  nitrate  3  to  9  hours  prior  to  training  or  competition.     • A  daily  dose  of  a  high-­‐nitrate  supplement  is  required  if  plasma  nitrite  concentration  is  to   remain  elevated,  but  the  effects  of  sustained  dietary  nitrate  supplementation  on   adaptations  to  training  are  not  clear.     14    



There  is  the  possibility  that  uncontrolled  high  doses  of  nitrate  salts  might  be  harmful  to   health.  



Natural  sources  of  nitrate  are  likely  to  promote  health.  



Athletes  wishing  to  explore  the  possible  ergogenic  effects  of  nitrate  supplementation   are  recommended  to  employ  a  natural,  rather  than  pharmacological,  approach.    

   

  Sources  of  dietary  nitrate   As  noted  in  table  1,  several  vegetables  are  rich  sources  of  dietary  nitrate.  Beetroot  juice,   in  regular  or  concentrated  form,  has  been  used  in  most  studies.  Finding  local  sources  of   beetroot  juice,  or  red  beet  juice,  in  the  United  States  may  be  difficult.  However,  such  products   may  be  found  on  the  internet  at  various  sites,  such  as  Amazon.  You  may  also  Google  the  term   beetroot  juice.  Prices  vary.  For  example,  a  16.9-­‐ounce  bottle  of  Biotta  beetroot  juice  may  cost   about  $5-­‐$7,  whereas  a  32-­‐ounce  bottle  of  Vitacost  beetroot  juice  costs  about  $8.50.  Beetroot   powder  and  tablets  are  available,  but  no  research  evaluating  their  effects  has  been  uncovered.         One  possibility  is  to  make  your  own  juice  from  red  beets.  Use  a  blender  to  mix  fresh  red   beets,  and  dilute  with  carrot  and/or  celery  juice  ;  modify  to  your  taste.  Blended  drinks  with   other  nitrate-­‐rich  vegetables  may  contribute  rich  sources.  In  the  February  5,  2012  issue  of   Parade,  Dr.  Mehmet  Oz  provided  a  formula  for  a  drink  rich  in  fiber,  antioxidants,  and  vitamins,   and  low  in  calories;  it  also  would  be  rich  in  nitrates.  Blend  the  following  ingredients  to  make  3-­‐4   servings.  You  could  experiment  with  adding  red  beets  as  well.     2  cups  spinach     2  cups  peeled  cucumber     6  stalks  celery     1  bunch  parsley     1  teaspoon  ginger     2  peeled  apples     Juice  of  1  lime     Juice  of  ½  lemon     Future  Research       The  current  research  findings  support  an  ergogenic  effect  of  dietary  nitrate   supplementation.  Laboratory  studies  clearly  support  an  increase  in  nitric  oxide  and  a  decrease   in  the  oxygen  cost  of  exercise,  as  well  as  improved  performance  in  various  exercise  tests.   Although  the  true  performance-­‐enhancing  effects  of  nitrate  are  yet  to  be  proven  under  actual   competitive  conditions  (Lundberg  and  others,    2011),  the  two  studies  involving  simulated  sport   competitive  performance  (Cermak  et  al.,  2012;  Lansley  et  al.,  2011A)  did  find  beneficial  effects   on  performance  in  trained  cyclists.  However,  additional  research  with  athletes,  both   endurance-­‐    and  resistance-­‐trained,  is  needed  to  support  these  preliminary  findings.       15    

Several  investigators  (Allen,  2011;  Bescós  et  al.,  2012;  Jones  et  al.,  2011)  note  that   future  studies  may  hone  the  supplementation  protocol  to  maximize  the  improvement  in  sports   performance  in  athletes,  as  well  as  exercise  tolerance  in  females  and  the  elderly,  in  whom  nitric   oxide  metabolism  is  impaired  by  estrogen  status  and/or  age,  and  in  patient  populations,  such  as   individuals  with  various  health  problems.     References   Abel  T,  Knechtle  B,  Perret  C,  Eser  P,  von  Arx  P,  Knecht  H.  Influence  of  chronic  supplementation   of  arginine  aspartate  in  endurance  athletes  on  performance  and  substrate  metabolism  -­‐  a   randomized,  double-­‐blind,  placebo-­‐controlled  study.  Int  J  Sports  Med.  26(5):344-­‐9,  2005.       Allen  JD.  Reply  to  Lundberg,  Larsen,  and  Weitzberg  J  Appl  Physiol.  111(2):618,  2011.       Allen  JD,  Stabler  T,  Kenjale  A,  Ham  KL,  Robbins  JL,  Duscha  BD,  Dobrosielski  DA,  Annex  BH.   Plasma  nitrite  flux  predicts  exercise  performance  in  peripheral  arterial  disease  after  3  months   of  exercise  training.  Free  Radic  Biol  Med.  49(6):1138-­‐44,  2010.     Allen  JD,  Cobb  FR,  Gow  AJ.  Regional  and  whole-­‐body  markers  of  nitric  oxide  production   following  hyperemic  stimuli.  Free  Radic  Biol  Med.  38(9):1164-­‐9,  2005.     Altars  TS,  Conte  CA,  Paschalis  VM,  Silva  JT,  Micelles  CD,  Bhambhani  YN,  Gomes  PS.  Acute  l-­‐ arginine  supplementation  increases  muscle  blood  volume  but  not  strength  performance.  Appl   Physiol  Nutr  Metab.  2012  Jan  17.  [Epub  ahead  of  print].     Argonne  National  Laboratory.  Nitrate  and  nitrite.  EVS  Human  Health  Fact  Sheet,  August,  2005     Bailey  SJ,  Winyard  PG,  Vanhatalo  A,  Blackwell  JR,  DiMenna  FJ,  Wilkerson  DP,  Jones  AM.  Acute  L-­‐ arginine  supplementation  reduces  the  O2  cost  of  moderate-­‐intensity  exercise  and  enhances   high-­‐intensity  exercise  tolerance.  J  Appl  Physiol.109(5):1394-­‐403,  2010A..       Bailey  SJ,  Fulford  J,  Vanhatalo  A,  Winyard  PG,  Blackwell  JR,  DiMenna  FJ,  Wilkerson  DP,  Benjamin   N,  Jones  AM.  Dietary  nitrate  supplementation  enhances  muscle  contractile  efficiency  during   knee-­‐extensor  exercise  in  humans.  J  Appl  Physiol.  109(1):135-­‐48,  2010B.         Bailey  SJ,  Winyard  P,  Vanhatalo  A,  Blackwell  JR,  Dimenna  FJ,  Wilkerson  DP,  Tarr  J,  Benjamin  N,   Jones  AM.  Dietary  nitrate  supplementation  reduces  the  O2  cost  of  low-­‐intensity  exercise  and   enhances  tolerance  to  high-­‐intensity  exercise  in  humans.  J  Appl  Physiol.  107(4):1144-­‐55,  2009.       Beard  J,  Tobin  B.  Iron  status  and  exercise.  Am  J  Clin  Nutr  72:594S-­‐97S,  2000.         Bescós  R,  Sureda  A,  Tur  JA,  Pons  A.  The  effect  of  nitric-­‐oxide-­‐related  supplements  on  human   performance.  Sports  Med.  42(2):99-­‐117,  2012.     16    

  Bescós  R,  Rodríguez  FA,  Iglesias  X,  Ferrer  MD,  Iborra  E,  Pons  A.  Acute  administration  of   inorganic  nitrate  reduces  VO(2peak)  in  endurance  athletes.  Med  Sci  Sports  Exerc.  43(10):1979-­‐ 86,  2011.     Bescós  R,  Gonzalez-­‐Haro  C,  Pujol  P,  Drobnic  F,  Alonso  E,  Santolaria  ML,  Ruiz  O,  Esteve  M,  Galilea   P.  Effects  of  dietary  L-­‐arginine  intake  on  cardiorespiratory  and  metabolic  adaptation  in  athletes.   Int  J  Sport  Nutr  Exerc  Metab.  19(4):355-­‐65,  2009.       Bloomer  RJ,  Alleman  RJ  Jr,  Cantrell  GS,  Farney  TM,  Schilling  BK.  Effects  of  2  nitrooxy  ethyl  2   amino  3  methylbutanoate  gel  on  resistance  exercise  performance  and  blood  nitrate/nitrite  in   resistance-­‐trained  men.  J  Strength  Cond  Res.  2011  Sep  14.  [Epub  ahead  of  print]     Bloomer  RJ,  Williams  SA,  Canale  RE,  Farney  TM,  Kabir  MM.  Acute  effect  of  nitric  oxide   supplement  on  blood  nitrate/nitrite  and  hemodynamic  variables  in  resistance  trained  men.    J   Strength  Cond  Res.  24(10):2587-­‐92,  2010.       Brandt,  C.,  and  Pedersen,  B.  The  role  of  exercise-­‐induced  myokines  in  muscle  homeostasis  and   the  defense  against  chronic  diseases.  Journal  of  Biomedicine  &  Biotechnology  520258,  2010.       Bryan  NS,  Calvert  JW,  Elrod  JW,  Gundewar  S,  Ji  SY,  Lefer  DJ.  Dietary  nitrite  supplementation   protects  against  myocardial  ischemia-­‐reperfusion  injury.  Proc  Natl  Acad  Sci  U  S  A.   104(48):19144-­‐9,  2007.       Buchman  AL,  O'Brien  W,  Ou  CN,  Rognerud  C,  Alvarez  M,  Dennis  K,  Ahn  C.  The  effect  of  arginine   or  glycine  supplementation  on  gastrointestinal  function,  muscle  injury,  serum  amino  acid   concentrations  and  performance  during  a  marathon  run.  Int  J  Sports  Med.  1999  20(5):315-­‐21,   1999.       Calvert  JW.  Cardioprotective  effects  of  nitrite  during  exercise.  Cardiovasc  Res.  15;89(3):499-­‐ 506,  2011.     Calvert  JW,  Condit  ME,  Aragón  JP,  Nicholson  CK,  Moody  BF,  Hood  RL,  Sindler  AL,  Gundewar  S,   Seals  DR,  Barouch  LA,  Lefer  DJ.  Exercise  protects  against  myocardial  ischemia-­‐reperfusion  injury   via  stimulation  of  β(3)-­‐adrenergic  receptors  and  increased  nitric  oxide  signaling:  role  of  nitrite   and  nitrosothiols.  Circ  Res.  108(12):1448-­‐58,  2011.       Carlström  M,  Persson  AE,  Larsson  E,  Hezel  M,  Scheffer  PG,  Teerlink  T,  Weitzberg  E,  Lundberg  JO.   Dietary  nitrate  attenuates  oxidative  stress,  prevents  cardiac  and  renal  injuries,  and  reduces   blood  pressure  in  salt-­‐induced  hypertension.  Cardiovasc  Res.  89(3):574-­‐85),  2011.       Cermak  NM,  Gibala  MJ,  van  Loon  L  JC.  Nitrate  Supplementation's  Improvement  of  10-­‐km  Time-­‐ Trial  Performance  in  Trained  Cyclists.  Int  J  Sport  Nutr  Exerc  Metab.  22(1):64-­‐71,  2012.       17    

Cheng  JW,  Baldwin  SN.  L-­‐arginine  in  the  management  of  cardiovascular  diseases.  Ann   Pharmacother.  35(6):755-­‐64,  2001.       Cornelissen  VA,  Fagard  RH,  Coeckelberghs  E,  Vanhees  L.  Impact  of  resistance  training  on  blood   pressure  and  other  cardiovascular  risk  factors:  a  meta-­‐analysis  of  randomized,  controlled  trials.   Hypertension.  58(5):950-­‐8,  2011.       Doutreleau  S,  Rouyer  O,  Di  Marco  P,  Lonsdorfer  E,  Richard  R,  Piquard  F,  Geny  B.  L-­‐arginine   supplementation  improves  exercise  capacity  after  a  heart  transplant.  Am  J  Clin  Nutr.   91(5):1261-­‐7,  2010.      

Doutreleau  S,  Mettauer  B,  Piquard  F,  Rouyer  O,  Schaefer  A,  Lonsdorfer  J,  Geny  B.  Chronic  L-­‐ arginine  supplementation  enhances  endurance  exercise  tolerance  in  heart  failure  patients.  Int  J   Sports  Med.  27(7):567-­‐72,  2006.       Drechsler-­‐Parks  DM.  Cardiac  output  effects  of  O3  and  NO2  exposure  in  healthy  older  adults.   Toxicol  Ind  Health.  11(1):99-­‐109,  1995.       Dreissigacker  U,  Wendt  M,  Wittke  T,  Tsikas  D,  Maassen  N.  Positive  correlation  between  plasma   nitrite  and  performance  during  high-­‐intensive  exercise  but  not  oxidative  stress  in  healthy  men.   Nitric  Oxide.  15;23(2):128-­‐35,  2010.       Erzurum  SC,  Ghosh  S,  Janocha  AJ,  Xu  W,  Bauer  S,  Bryan  NS,  Tejero  J,  Hemann  C,  Hille  R,  Stuehr   DJ,  Feelisch  M,  Beall  CM.  Higher  blood  flow  and  circulating  NO  products  offset  high-­‐altitude   hypoxia  among  Tibetans.  Proc  Natl  Acad  Sci  U  S  A.  104(45):17593-­‐8,  2007.       Ferro,  R.  T.  Drug  use.  In  McKeag,  D.  B.,  and  Moeller,  J.  L.  ACSM’s  Primary  Care  Sports  Medicine   (Second  edition).  Philadelphia:  Lippincott  Williams  &  Wilkins,  2007     Frisoli  TM,  Schmieder  RE,  Grodzicki  T,  Messerli  FH.  Beyond  salt:  lifestyle  modifications  and   blood  pressure.  Eur  Heart  J.  32(24):3081-­‐7,  2011.       Gilchrist  M,  Winyard  PG,  Benjamin  N.  Dietary  nitrate-­‐-­‐good  or  bad?  Nitric  Oxide.  15;22(2):104-­‐ 9,  2010.       Hickner  RC,  Tanner  CJ,  Evans  CA,  Clark  PD,  Haddock  A,  Fortune  C,  Geddis  H,  Waugh  W,   McCammon  M.  L-­‐citrulline  reduces  time  to  exhaustion  and  insulin  response  to  a  graded   exercise  test.  Med  Sci  Sports  Exerc.  38(4):660-­‐6,  2006.         Hord  NG.  Dietary  nitrates,  nitrites,  and  cardiovascular  health.  Curr  Atheroscler  Rep  13(6):484-­‐ 92,  2011.       Hord  NG,  Tang  Y,  Bryan  NS.  Food  sources  of  nitrates  and  nitrites:  the  physiologic  context  for   potential  health  benefits.  Am  J  Clin  Nutr  90:1-­‐10,  2009   18    

  Jones,  A.  Is  nitrate  the  new  magic  bullit  (sic)?    Sport  Nutrition  Conference.  Mallorca,  2011.       Jones  AM,  Grassi  B,  Christensen  PM,  Krustrup  P,  Bangsbo  J,  Poole  DC.  Slow  component  of  V·∙O2   kinetics:  mechanistic  bases  and  practical  applications.  Med  Sci  Sports  Exerc.  43(11):2046-­‐62,   2011.       Kelley  GA,  Kelley  KS.  Efficacy  of  aerobic  exercise  on  coronary  heart  disease  risk  factors.  Prev   Cardiol.  11(2):71-­‐5,  2008.       Kenjale  AA,  Ham  KL,  Stabler  T,  Robbins  JL,  Johnson  JL,  Vanbruggen  M,  Privette  G,  Yim  E,  Kraus   WE,  Allen  JD.  Dietary  nitrate  supplementation  enhances  exercise  performance  in  peripheral   arterial  disease.  J  Appl  Physiol.  110(6):1582-­‐91,  2011.       Lansley  KE,  Winyard  PG,  Bailey  SJ,  Vanhatalo  A,  Wilkerson  DP,  Blackwell  JR,  Gilchrist  M,   Benjamin  N,  Jones  AM.  Acute  dietary  nitrate  supplementation  improves  cycling  time  trial   performance.  Med  Sci  Sports  Exerc.  43(6):1125-­‐31,  2011A.     Lansley  KE,  Winyard  PG,  Fulford  J,  Vanhatalo  A,  Bailey  SJ,  Blackwell  JR,  DiMenna  FJ,  Gilchrist  M,   Benjamin  N,  Jones  AM.  Dietary  nitrate  supplementation  reduces  the  O2  cost  of  walking  and   running:  a  placebo-­‐controlled  study.  J  Appl  Physiol.  110(3):591-­‐600,  2011B.       Larsen  FJ,  Schiffer  TA,  Borniquel  S,  Sahlin  K,  Ekblom  B,  Lundberg  JO,  Weitzberg  E.  Dietary   inorganic  nitrate  improves  mitochondrial  efficiency  in  humans.  Cell  Metab.  13(2):149-­‐59,  2011.       Larsen  FJ,  Weitzberg  E,  Lundberg  JO,  Ekblom  B.  Dietary  nitrate  reduces  maximal  oxygen   consumption  while  maintaining  work  performance  in  maximal  exercise.  Free  Radic  Biol  Med.   15;48(2):342-­‐7,  2010.       Larsen  FJ,  Ekblom  B,  Sahlin  K,  Lundberg  JO,  Weitzberg  E.  Effects  of  dietary  nitrate  on  blood   pressure  in  healthy  volunteers.  N  Engl  J  Med.  355(26):2792-­‐3,  2006.         Liu  TH,  Wu  CL,  Chiang  CW,  Lo  YW,  Tseng  HF,  Chang  CK.  No  effect  of  short-­‐term  arginine   supplementation  on  nitric  oxide  production,  metabolism  and  performance  in  intermittent   exercise  in  athletes.  J  Nutr  Biochem.  20(6):462-­‐8,  2009.       Lundberg  JO,  Larsen  FJ,  Weitzberg  E.  Supplementation  with  nitrate  and  nitrite  salts  in  exercise:   a  word  of  caution.  J  Appl  Physiol.  111(2):616-­‐7,  2011.       Machha  A,  Schechter  AN.  Dietary  nitrite  and  nitrate:  a  review  of  potential  mechanisms  of   cardiovascular  benefits.  Eur  J  Nutr.  50(5):293-­‐303,  2011.         Maeda  S,  Otsuki  T,  Iemitsu  M,  Kamioka  M,  Sugawara  J,  Kuno  S,  Ajisaka  R,  Tanaka  H.  Effects  of   leg  resistance  training  on  arterial  function  in  older  men.  Br  J  Sports  Med.  40(10):867-­‐9,  2006.     19    

  Maeda  S,  Tanabe  T,  Otsuki  T,  Sugawara  J,  Iemitsu  M,  Miyauchi  T,  Kuno  S,  AjisakaR,  Matsuda  M.   Moderate  regular  exercise  increases  basal  production  of  nitric  oxide  in  elderly  women.   Hypertens  Res.  27(12):947-­‐53,  2004.       Maeda  S,  Miyauchi  T,  Kakiyama  T,  Sugawara  J,  Iemitsu  M,  Irukayama-­‐Tomobe  Y,  Murakami  H,   Kumagai  Y,  Kuno  S,  Matsuda  M.  Effects  of  exercise  training  of  8  weeks  and  detraining  on  plasma   levels  of  endothelium-­‐derived  factors,  endothelin-­‐1  and  nitric  oxide,  in  healthy  young  humans.   Life  Sci.  69(9):1005-­‐16,  2001.         Maughan  RJ,  Greenhaff  PL,  Hespel  P.  Dietary  supplements  for  athletes:  Emerging  trends  and   recurring  themes.  J  Sports  Sci.  Suppl  1:S57-­‐66,  2011.       Mayes,  R.  The  modern  Olympics  and  post-­‐modern  athletics:  A  clash  in  values.  Journal  of   Philosophy,  Science  &  Law.  10:1-­‐17,  2010.     Mazzuero  G,  Mazzuero  A,  Pascariello  A.  Severe  acute  mountain  sickness  and  suspect  high   altitude  cerebral  edema  related  to  nitroglycerin  use.  High  Alt  Med  Biol.  9(3):241-­‐3,  2008.       McConell  GK,  Huynh  NN,  Lee-­‐Young  RS,  Canny  BJ,  Wadley  GD.  L-­‐Arginine  infusion  increases   glucose  clearance  during  prolonged  exercise  in  humans.  Am  J  Physiol  Endocrinol  Metab.   290(1):E60-­‐E66,  2006.       Olek  RA,  Ziemann  E,  Grzywacz  T,  Kujach  S,  Luszczyk  M,  Antosiewicz  J,  Laskowski  R.  A  single  oral   intake  of  arginine  does  not  affect  performance  during  repeated  Wingate  anaerobic  test.  J   Sports  Med  Phys  Fitness.  50(1):52-­‐6,  2010.       Presley  TD,  Morgan  AR,  Bechtold  E,  Clodfelter  W,  Dove  RW,  Jennings  JM,  Kraft  RA,  King  SB,   Laurienti  PJ,  Rejeski  WJ,  Burdette  JH,  Kim-­‐Shapiro  DB,  Miller  GD.  Acute  effect  of  a  high  nitrate   diet  on  brain  perfusion  in  older  adults.  Nitric  Oxide.  24(1):34-­‐42,  2011.         Provin  TL,  Hossner  LR.  What  happens  to  nitrogen  in  soils.  AgriLife  Extension,  Texas  A&M   System.    E-­‐59;  June,  2001.       Rassaf  T,  Lauer  T,  Heiss  C,  Balzer  J,  Mangold  S,  Leyendecker  T,  Rottler  J,  Drexhage  C,  Meyer  C,   Kelm  M.  Nitric  oxide  synthase-­‐derived  plasma  nitrite  predicts  exercise  capacity.  Br  J  Sports   Med.  41(10):669-­‐73,  2007.       Rodriguez-­‐Plaza  LG,  Alfieri  AB,  Cubeddu  LX.  Urinary  excretion  of  nitric  oxide  metabolites  in   runners,  sedentary  individuals  and  patients  with  coronary  artery  disease:  effects  of  42  km   marathon,  15  km  race    and  a  cardiac  rehabilitation  program.  J  Cardiovasc  Risk.    4(5-­‐6):367-­‐72,   1997.       20    

Santamaria  P.  Nitrate  in  vegetables:  toxicity,  content,  intake  and  EC  regulation.  J  Sci  Food  Agric   86:10–7,  2006.       Stamler  JS,  Meissner  G.  Physiology  of  nitric  oxide  in  skeletal  muscle.  Physiol  Rev.  81(1):209-­‐237,   2001.       Tang  JE,  Lysecki  PJ,  Manolakos  JJ,  MacDonald  MJ,  Tarnopolsky  MA,  Phillips  SM.  Bolus  arginine   supplementation  affects  neither  muscle  blood  flow  nor  muscle  protein  synthesis  in  young  men   at  rest  or  after  resistance  exercise.  J  Nutr.  141(2):195-­‐200,  2011.           Vanhatalo  A,  Fulford  J,  Bailey  SJ,  Blackwell  JR,  Winyard  PG,  Jones  AM.  Dietary  nitrate  reduces   muscle  metabolic  perturbation  and  improves  exercise  tolerance  in  hypoxia.  J  Physiol.  15;589(Pt   22):5517-­‐28,  2011.       Vanhatalo  A,  Bailey  SJ,  Blackwell  JR,  DiMenna  FJ,  Pavey  TG,  Wilkerson  DP,  Benjamin  N,  Winyard   PG,  Jones  AM.  Acute  and  chronic  effects  of  dietary  nitrate  supplementation  on  blood  pressure   and  the  physiological  responses  to  moderate-­‐intensity  and  incremental  exercise.  Am  J  Physiol   Regul  Integr  Comp  Physiol.  299(4):R1121-­‐31,  2010.         Vassalle  C,  Lubrano  V,  Domenici  C,  L'Abbate  A.  Influence  of  chronic  aerobic  exercise  on   microcirculatory  flow  and  nitric  oxide  in  humans.  Int  J  Sports  Med.  24(1):30-­‐5,  2003.       Wang  JS.  Effects  of  exercise  training  and  detraining  on  cutaneous  microvascular  function  in   man:  the  regulatory  role  of  endothelium-­‐dependent  dilation  in  skin  vasculature.  Eur  J  Appl   Physiol.  93(4):429-­‐34,  2005.       Williams,  MH.  Nutrition  for  Health,  Fitness  &  Sport.  Boston:  McGraw-­‐Hill,  2010.       Willoughby  DS,  Boucher  T,  Reid  J,  Skelton  G,  Clark  M.    Effects  of  7  days  of  arginine-­‐alpha-­‐ ketoglutarate  supplementation  on  blood  flow,  plasma  L-­‐arginine,  nitric  oxide  metabolites,  and   asymmetric  dimethyl  arginine  after  resistance  exercise.  Int  J  Sport  Nutr  Exerc  Metab.  21(4):291-­‐ 9,  2011.       Wilson  AM,  Harada  R,  Nair  N,  Balasubramanian  N,  Cooke  JP.  L-­‐arginine  supplementation  in   peripheral  arterial  disease:  no  benefit  and  possible  harm.  Circulation.  116(2):188-­‐95,  2007.       Xiao  DS,  Qian  ZM.  Plasma  nitric  oxide  and  iron  concentrations  in  exercised  rats  are  negatively   correlated.  Mol  Cell  Biochem.  208(1-­‐2):163-­‐6,  2000.         © 2012 Abbott Laboratories The EAS ACADEMY™ website and its content is owned by Abbott Nutrition, a division of Abbott Laboratories. All rights reserved. Any redistribution or reproduction of any part or all of the contents in any form is prohibited other than the

21    

following: 1. you may print or download to a local hard disk extracts for your personal and non-commercial use only; 2. you may copy the content to individual third parties for their personal use, but only if you acknowledge the website as the source of the material. You may not, except with our express written permission, distribute or commercially exploit the content. Nor may you transmit it or store it in any other website or other form of electronic retrieval system.  

22