Glazing Performance Industry Certification and Test Standards

Pella 2017 Architectural Design Manual Division 08 – Openings Windows and Doors www.PellaADM.com PP-2 PRODUCT PERFORMANCE INTRODUCTION...

17 downloads 804 Views 1MB Size
PR ODUCT PERF ORM A N C E

SECTION DIRECTORY

Introduction....................................................................................................................................................... PP-2 Quality assurance.............................................................................................................................................. PP-3 Leed.................................................................................................................................................................... PP-4 Specifications..................................................................................................................................................... PP-5 General Application Guidelines...................................................................................................................... PP-6 Product Performance Considerations............................................................................................................. PP-8 Combination Design Considerations...........................................................................................................PP-10 Use and Installation Considerations.............................................................................................................PP-12 Elements of Glazing Performance................................................................................................................PP-14

Glazing Performance Glazing Options..............................................................................................................................................PP-15 HurricaneShield® Impact-Resistant Glazing.................................................................................................PP-19 Glazing Performance for Between-Glass Window Fashions.....................................................................PP-20 High Altitude Glass.........................................................................................................................................PP-21 Argon Filling of Insulating Glass...................................................................................................................PP-22 Glass Design Pressure Performance Charts................................................................................................PP-23

Industry Certification and Test Standards Industry Performance Standards—Air /  Water / Design / Structural.............................................................PP-25 Industry Certification......................................................................................................................................PP-28 Compliance Information................................................................................................................................PP-29 Industry Testing Methods...............................................................................................................................PP-30

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-1

INTRODUCTION

PRO DUCT PERFO R M A N C E

In this manual we refer to two types of performance criteria for the selection of windows and doors: • Product performance • Glazing performance PRODUCT PERFORMANCE relates to the performance of the entire window or door assembly. Types of this product performance include: • • • • • • • •

Performance grade Performance class Water penetration Air infiltration Thermal performance Forced entry resistance Operating force (ease of operation) Acoustic performance

GLAZING PERFORMANCE pertains to the light transmission and thermal transmission characteristics of the center glazing only. Glazing performance criteria include: • • • • • • • •

Inside glass surface temperature Relative heat gain Shading coefficient Solar heat gain coefficient U-Factor UV Transmission LBL damage function Visible light transmission

This section is an in-depth review of window and door performance criteria, limitations and standards. Pella Corporation reserves the right to change details, specifications, sizes or any other information in this manual without notice. The material in this manual is not intended to create any warranty of fitness for a particular purpose. Contact your local Pella representative for specific application recommendations. Pella Corporation shall not be liable for errors contained herein or for incidental or consequential damages arising out of the furnishing or use of this material. See Pella Corporation’s product warranties for details on warranty coverage and limitations.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-2

QUALIT Y ASSURANCE

PR ODUCT PERF ORM A N C E

Pella Corporation has established the most rigorous and comprehensive quality assurance and testing program in the industry. In our testing facilities we are continually developing more sophisticated test equipment and procedures to ensure that existing products and proposed modifications meet, and surpass, industry performance standards.

Xeno n and UV Exp o sure

Simulates exposure to the sun or UV rays. After six weeks products are checked for color fade, gloss loss, and material property changes.

Acid Rain, Salt Fog Test

Tests corrosion resistance of painted aluminum, plated steels and hardware using imitation acid rain or salt fog.

Humidity Test

Exposes products to 100 percent relative humidity for four weeks. Products are checked for paint adhesion, mold and mildew on wood.

Packaging Test

Tests packaging methods — products are dropped and vibrated in order to simulate shipping. Products are checked for dents, cracks and loose fasteners.

D oo r Cycle Tes t

Cycles doors open / close and lock / unlock 100,000 times. Doors are checked for hinge wear and weatherstrip deterioration.

D ouble-Hung Cycle Test

Cycles double-hung windows open / close and lock / unlock 6,000 times. Windows are checked for jamb liner and balance cord wear, and weatherstrip deterioration.

Casement Cycle Test

Cycles casement windows open / close and lock / unlock 10,000 times. Windows are checked for hinge wear, weatherstrip deterioration and locking forces.

Tensile Tester

Tests for fastener strength and glue bond strength in tensile and shear.

Insulating Glas s (I G ) Accelerated Weather Test

Exposes IG to severe weather conditions. Accelerates test so years of weathering can be accomplished in months.

Thermal Stress Tes t

Tests the performance of windows and doors in temperatures ranging from -40 degrees F to 160 degrees F.

Fro st-Point Test

Tests the frost point of the gas inside an IG unit (the point at which condensation forms inside the panes of glass).

Air-WaterStructural Test

Air component simulates a 25 mph wind and measures the air leakage through the product. Water component simulates a wind driven eight inch per hour rain (simulated wind speed varies depending on the product), and tests for resistance to water leakage. Structural component simulates wind loads in both positive and negative directions (depending on the product) and tests for structural integrity.

PATE N T INFO R MAT IO N Pella is an industry leader in the development of highly innovative products. Pella Corporation owns numerous U.S. and foreign patents on Pella® window and door technologies and aggressively protects its intellectual property.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-3

LEED PRO DUCT PERFO R M A N C E

LEED Environmental Category*

E N ERGY AN D ATMO SP HE RE

Maximum Possible Points** NC

Schools

CS

35

33

37

EA Prerequisite 2

Minimum Energy Performance

Yes

Yes

Yes

EA Credit 1

Optimize Energy Performance

19

19

21

14

13

13

MATE RIAL S A ND RE SO U RCE S MR Credit 2

Construction Waste Management

2

2

2

MR Credit 4

Recycled Content

2

2

2

MR Credit 5

Regional Materials

2

2

2

MR Credit 7 (CS MR Credit 6)

Certified Wood

1

1

1

15

23

12

Yes

Yes

Yes

IN D OOR EN VI RO NME NTA L QUA L I TY IEQ Prerequisite 1

Minimum Indoor Air Quality Performance

IEQ Credit 2

Increased Ventilation

1

1

1

IEQ Credit 6.1

Controllability of Systems - Lighting

1

1

N/A

IEQ Credit 6.2

Controllability of Systems - Thermal Comfort

1

1

1

IEQ Credit 7.1

Thermal Comfort - Design

1

1

1

IEQ Credit 8.1

Daylight and Views - Daylight

1

3

1

IEQ Credit 8.2

Daylight and Views - Views

1

1

1

IEQ Credit 9

Enhanced Acoustical Performance

N/A

1

N/A

5

4

5

5

4

5

4

4

4

4

4

4

IN N OVATION I N D E SI G N ID Credit 1

Innovation in Design

RE GION AL PRI O RI TY PR Credit 1

Regional Priority

*Source: LEED Reference Guide for Green Building Design and Construction - 2009 Edition (www.usgbc.org) ** NC = New Construction, CS = Core and Shell

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-4

SPECIFICATIONS PR ODUCT PERF ORM A N C E

Pella Corporation makes Pella CSI format and AIA Masterspecs specifications for the products listed. They are available in RTF format for download at PellaADM.com. ALUMIN UM-CL AD WO O D

Casement / Awning—08551

Double-hung—08552

Large Awning—08555

Monumental Double- and Single-hung—08556

Circlehead—08554

Hinged Patio Doors—08213

Clad Frame—08553

Out-Swing Commercial Hinged Patio Doors—08214

WOO D

Casement / Awning—08551

Double-hung—08552

Circlehead Windows—08554

Hinged Patio Doors—08213

Clad Fixed Frame—08553

Sliding Patio Doors—08262

ALUMIN UM-CL AD WO O D WI TH HU RRI CA NE SHIE LD ® I M PACT- R E S ISTAN T GLAZ I N G

Casement / Awning—08551

Double-hung—08552

Circlehead—08554

Hinged Patio Doors—08213

Clad Fixed Frame—08553

Sliding Patio Doors—08262

FIBERGL ASS

Casement / Awning—08572

Double-hung—08572

Fixed Frame—0857

Single-hung—08572

Fixed Window—08572

Sliding Window—08572 Sliding Patio Door—08263

FIBERGL ASS COMP O SI TE

Special Shapes—08572 V INYL

Casement / Awning—08562

Double-hung—08562

Fixed Window—08562

Single-hung—08562

Radius Window—08562

Sliding Window—08562 Sliding Patio Door—08261

ENTRY D OOR

Out-Swing Entry Door—08214 PELLA P ROD UCT WA RRA NTI E S Always read the Pella warranties before purchasing or installing Pella® products. See warranties for complete details at: http://professional.pella.com/warranties

LIMITED

Wood Windows and Patio Doors Architect Series® Reserve™, Architect Series, Designer Series®, Pella® 450 Series

L I MI T E D

Fiberglass Windows and Patio Doors Pella Impervia®

LIMITED

Vinyl Windows and Patio Doors Pella® 350 Series, Pella® 250 Series, Encompass by Pella®,

Pella Fiberglass and Steel Entry Door System Warranty *

Pella Wood Entry Door Warranty * Available only with optional AdvantagePlus™ Protection System.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-5

PRO DUCT PERFO R M A N C E

GENERAL APPLICATION GUIDELINES

A.  GENERA L PE RFO RMAN CE CO N SIDE R AT IO N S Pella® windows and doors, are designed and manufactured to established engineering and industry standards which maximize satisfactory performance within the limitations of the specifications, conditions and tests listed. Published air infiltration performance of other products, and Design Pressure (DP), Structural Test Pressure (STP) and water penetration performance numbers for all products are representative of test performance of product samples. Testing is performed on randomly selected production samples, and conducted in Pella’s test lab as well as in independent testing laboratories. Products which are Hallmark Certified are noted on the product labels and in the Size and Performance Data charts in each product section of the Architectural Design Manual. Many products will exceed published specifications; however, performance of installed products may be affected by factors beyond Pella’s control, such as shipping, handling, installation, construction practices, excessive environmental conditions, normal wear and tear and ongoing care and maintenance. Although efforts are made to minimize the effects of such factors, it is not possible to guarantee that any particular unit will meet or exceed published specifications.

B .  SEVERE CO N DITIO N S Projects that will be subject to severe climatic and atmospheric conditions may require that architects and specifiers address higher product performance requirements and more stringent maintenance schedules. Severe conditions that should be taken into account when selecting, specifying and designing to accommodate windows and doors may include: Sa nd a n d Salt E x pos u re

Any windows and doors installed near salt water — regardless of material or manufacturer — are subjected, with other building materials, to more severe weathering than in other typical locations. Along with other building products, they should receive the additional protection which is standard and customary practice in such coastal locations at time of installation, and periodic inspection and maintenance as necessary thereafter.

Ch e m i cal Exp o sure

Severe chemical exposure in locations near chemical plants and some types of industrial complexes may adversely affect satisfactory performance of Pella products and substantially increase maintenance requirements. Judgements regarding the use of Pella products in such areas should be based upon local experience and customer awareness. Pella products should not be used in indoor swimming pool or hot tub enclosures or other high humidity and corrosive environments.

Cl i m at i c E xp o sure

Pella products are designed to perform in cold climate applications, however condensation or ice can form, mainly on interior glass surfaces, at low temperatures. Condensation or icy conditions will primarily depend upon the amount of room side humidity to which the products are exposed and generally does not indicate a product defect.

Area s of Severe W i n d a n d Rain

Areas subject to severe wind and rain may produce temporary conditions which exceed product performance standards. No claims are made beyond compliance with the product performance levels published for each product at the time of manufacture. Special design considerations may be required, such as subsill, built-up curbs, overhang protection, or unit set back from exterior face of wall.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-6

GENERAL APPLICATION GUIDELINES PR ODUCT PERF ORM A N C E

C .  P RODUCT PE RFORMA N CE L IMITAT IO N S D e s i g n Criteria and Pe r f or m ance Re q ui re ments

Selection of design criteria and performance requirements is the responsibility of the building owner, architect, contractor, installer and/or consumer responsible for the building system in which Pella products are to be installed. The information in this section is presented only as an aid to proper design considerations.

Produ c t L i m i t at i ons

Pella windows and doors must not be installed in conditions beyond published product limitations.

Pe r f or m ance Class, Pe r f or m ance Grade ( PG ), a n d D esign Pre s s u re (D P)

Window and door Design Pressures (DP) published herein represent the windload pressure that a single unit is designed to withstand from a structural standpoint when glazed with the appropriate glass thickness. Air infiltration and water resistance performance are as indicated in this section or in each product section.

Gl a zi ng

Pella products are standard-glazed to withstand a minimum of 20 psf (0.957 kPa) Design Pressure (DP). Compliance with code requirements, wind-loading and/or design specifications may require special glazing. See glazing options in each product section.

Re pl a ce ments

Any glass or hardware replacements must be of equal specifications.

Modi f i c ations

Product modifications that are not approved by Pella Corporation will void the Limited Warranty.

D.  OTHER COND ITIONS Mu l l i on Cons t ru ction

Mullions should be designed not to exceed L / 180 deflection under design wind load pressures. Some conditions may require less deflection. In addition, all installations, where there is a combination of vertical and horizontal mullions, will require reinforcement in either the horizontal or vertical direction. Some conditions may require additional horizontal mullion reinforcement to carry dead loads. See www.PellaADM.com for more information.

Ve rt i c a l Stack ing

See www.PellaADM.com for stacking considerations.

E xpa ns i on J oints

For continuous horizontal rows of windows, a vertical expansion joint must be provided at least every 20' (6 096 mm). See the PellaADM.com site for more information.

W i ndow Walls

Pella units are not intended to provide the entire exterior surface or large expanses of a structure. Combination assemblies are limited by horizontal and vertical structural mullion design and other installation factors. Installation applications beyond the criteria established in the Combination Recommendation section must be designed and considered on a job-by-job basis and require factory shop drawings.

Bu i l di n g s with Po s i t i v e Interior Air Pre s s u re

Because of special ventilating requirements or through natural stack action in some high-rise buildings, positive interior air pressures may cause between-glass condensation in winter (for Designer Series® products with an interior hinged glass panel).

Un i t s S e t at a n A ng l e

No Pella window or door products are to be installed at any angle from vertical, unless specifically approved by Pella Corporation.

E.  SP EC IA L RE Q UIRE ME N T S S af e t y Glass

Glass installation in areas subject to human impact must be safety-glazed according to the Safety Standard for Architectural Glazing Materials (16 CFR 1201), issued by the U.S. Consumer Product Safety Commission (or as prescribed by local codes).

I nt e r i or Trim

Pella wood and aluminum-clad wood products are intended to be installed with interior wood trim or other trim that will cover the frame edge.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-7

PRODUCT PERFORMANCE PRO DUCT PERFO R M A N C E

EL EM ENTS OF PROD UCT PE R FO R MA N CE Performance is an important criterion in the selection of windows and doors. In this manual, we refer to two types of performance: product performance and glazing performance. Product performance includes the following elements: Performance Grade (PG), Design Pressure (DP), Performance Class, Water Penetration, Air Infiltration and Forced Entry Resistance (FER). A definition of each of these terms is below. Pella® product performance can be found in each product section. Glazing performance includes elements such as U-Factor, Visible Light Transmission (VLT or VT), and Solar Heat Gain Coefficient (SHGC). Glazing performance information can be found in each product section.

P RODUCT PE RFO RMA NCE T E R MS Per f or m ance G ra de (PG)

Numerical designator based on the lesser of Design Pressure (DP) and Water Penetration performance. In order to qualify for a given Performance Grade (PG), one or more representative samples of the product must pass all required performance tests for the products type, including operating force (if applicable), air infiltration, water penetration, Design Pressure (DP), Structural Test Pressure (STP), Forced Entry Resistance (FER), and all product specific auxiliary tests.

Per f or m ance Class

The industry standards define requirements for four Performance Classes of windows and doors. The Performance Classes are designated: (R), (LC), (CW) and (AW). This classification system provides for several levels of performance so that the purchaser or specifier may select the appropriate level of performance depending on: climatic conditions; height of installation; type of building; window size; durability; etc. Product selection should always be based on the performance requirements of the particular project. For example, many residential buildings are built in locations subject to severe weather that may require higher performance fenestration products than those that meet only the Performance Class (R) requirements. On the other hand, many hospitals, schools, institutions, etc. may successfully use products meeting Performance Class (R), (LC), or (CW) requirements.

De si g n Pre s s u re (D P)

A rating that identifies the load, induced by wind, that a product is rated to withstand in its end-use application. Note: Design Pressure (DP) is not to be confused with Performance Grade (PG) or structural test pressure (STP).

St ru c t u ral Test Pre s s u re (STP )

A minimum of 1.5 times Design Pressure (DP). In order for a product to be rated at a given Design Pressure (DP), it must be able to withstand both positive and negative pressures of at least 1.5 times that of Design Pressure (DP). For example, to receive a Design Pressure (DP) rating of 40 psf, the product must be able to withstand test loads of at least + / – 60 psf.

Wat e r Pen e t rat io n

The ability of a window or door to withstand water leakage under specified conditions. It is a minimum of 15% of the Design Pressure (DP). For example, a product with a Design Pressure (DP) of 40 psf must pass a water test at a minimum of 6 psf. All products except side-hinged doors must never be tested at less than 2.86 psf.

Ai r I nf i l t rat i on

The amount of air leaking through a window or door from exterior to interior. It is calculated in cfm per square foot of frame area at 1.57 psf (25 mph) or 6.24 psf (50 mph) wind pressure for all products.

Force d Entry Re s i s t a nce (FER)

The ability of a window or door in the locked position to resist entry under conditions of stress and load. Products are given a Forced Entry Resistance (FER) grade; the higher the grade, the greater the ability to resist entry under specified conditions.

SOU ND TRA NS MIS S IO N CL A SS A N D O U T DO O R -IN D O O R TR A N S M I S S I O N C LA S S The ability of a window or door to reduce outside noise is an important consideration in product selection. The individual product sections display the actual performance ratings of Pella products including the Sound Transmission Class (STC) and Outdoor–Indoor Transmission Class (OITC). Both measure the amount of noise reduction that can be achieved with a given product. A noise reduction of 10 decibels represents cutting the noise level in half, as interpreted by the human ear. So a rating of 25 means that the product reduces the outside noise by approximately 25 decibels, cutting the noise in half 2-1/2 times, or cutting it by over 80 percent. STC ratings give an indication of noise reduction that can be achieved with typical indoor (high frequency) noises such as human speech, computers, printers, etc. However, some specifiers and other manufacturers use STC ratings for exterior products because until recently, that is all that was available. OITC ratings are a much better indicator of exterior noise reduction. That is because OITC ratings include lower frequency noises such as traffic, construction equipment, and lawn and garden equipment, therefore, OITC ratings are usually a few points lower than STC ratings, because the lower frequency sounds are more difficult to attenuate. Pella will continue to show both OITC and STC ratings until the entire industry begins to use OITC. In the meantime, when comparing to other manufacturers, be sure to compare apples-to-apples (e.g. STC vs. STC, not STC vs. OITC). Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-8

PRODUCT PERFORMANCE PR ODUCT PERF ORM A N C E

P RODU CT PE RFORMAN CE CO NSI D E RATI O NS Window or door specific performance requirements are determined from building code requirements, building location, topography, nearby structures, building design, placement of windows or doors, and other factors. To evaluate whether Pella® products with non-impact or impact-resistant glazing meet specific project requirements, consider the first three criteria below, then determine joining mullion limitations for combination assemblies.

1 . DES IG N W IN D LOAD P RE SSU RE Determine the design windload pressure for the application as specified by the architect, design professional and / or local building codes. If no Design Pressure (DP) requirement was given, refer to ASCE 7 1 for an in-depth analysis of Design Pressure (DP) requirements for windloads on buildings. Contact your local Pella representative on projects over three stories. Performance Class and Performance Grade (PG): Use the Design Windload Pressure to select the Product Performance Class and Performance Grade (PG) per AAMA / WDMA / CSA 101 / I.S.2 / A440. Use the Design Data charts in each product section to ensure that the products and sizes you have selected meet or exceed the design windload pressure and Performance Class and Performance Grade (PG) requirements determined in this first consideration. Glazing of Units Once you have verified that the products / sizes selected meet or exceed the Design Pressure (DP) requirement, you must verify that the glass will also satisfy the Design Pressure (DP) requirement. If the glass will not be adequate, a stronger glass (for example, thicker and / or tempered) or impact-resistant glass can be requested in most cases. Go to glazing section in this document for detailed instructions on how to determine glass thickness and / or type to meet project Design Pressure (DP) requirements.

2 . W IND-B ORN E D EBRIS RE G I O N If the project is in a hurricane wind‑borne debris region, protection from flying debris may be required (i.e., impact-resistant glass, storm shutters, plywood coverings, etc.). Check the local building codes for more information. Pella HurricaneShield® products with impact-resistant glass are available for these conditions. Check within each product section for specific products offering the impact-resistant glass option. Product approvals are listed on the Design Data pages within those same sections or at www.PellaADM.com.

3 . PR ODUCT AP P ROVALS Some construction products need to be approved by the state, county, or other authority having jurisdiction. Consult local building officials and / or building design professionals for details. Some examples of product approvals are: FPAS — Florida Product Approval System TDI — Texas Department of Insurance NOA — Notice of Acceptance for Miami‑Dade County, Florida The approvals for select products are available from your local Pella sales representative.

D E TERM INE JOINING MU L L IO N L IMITAT IO N S ( CO M B I N ATI O N A S S E M B LI E S O N LY ) When combining two or more units together to form a combination assembly, the mullion(s) must be analyzed for structural integrity. Use the project’s required Design Pressure (DP) to calculate when and what type of mullion reinforcement may be required for each combination. See the Combination Recommendations section. When stacking units, weight limitations of the mullions must also be reviewed. See the Combination Recommendations section for more information.

(1) ASCE 7—Minimum Design Loads for Buildings and other Structures. Published by the American Society of Civil Engineers, 345 East 47th Street, New York, NY 10017-2398.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-9

COMBINATION DESIGN CONSIDERATIONS PRO DUCT PERFO R M A N C E

This section explores requirements and limitations related to mulling various combinations of windows and doors. I MP ORTA NT Determining and meeting the structural load requirements and design of the rough opening is the responsibility of the architect or engineer. Window and door frame systems are not designed to support additional elements or components of the building wall system. Specific accessories and construction details must address the various conditions that are critical for the proper design of a horizontal combination of windows (ribbon windows) and vertical combination (stacked windows) such as: • Proper flashing • Control joints to accommodate expansion and contraction • Intermediate structural support

• Mullion reinforcing end anchorage • Rough opening wall construction to accept loads transferred from the window combination.

D E F INIT IONS Com b i n atio n

An assembly formed by two or more separate windows, window composites, or doors whose frames are mulled together using a combination joining mullion or reinforcing mullion.

Com b i n atio n (Joi ni n g) Mullion

A horizontal or vertical member formed by joining two or more individual window or door units together without a mullion stiffener.

Com posite

A window or door consisting of two or more products in one frame utilizing an integral mullion.

In t e g ra l Mullion

A horizontal or vertical member which is bounded at either end or both ends by a crossing frame member.

Re i nf orcing Mu l l i on

A horizontal or vertical member with an added continuous mullion stiffener and joining two or more individual windows or doors along the sides of the mullion stiffener.

DESIGN CONSIDERATIONS The following steps are provided as a guide to assist in properly integrating Pella® products and accessories into combination assemblies. Sample calculations are based on the following steps. 1 . CONS IDER THE OVE RA L L SI ZE A ND CO NF I G U RATIO N O F T H E CO M B I N AT IO N The basic combination assembly types are shown on the following page. The dashed line indicates where a spread mullion or reinforcing mullion may be required. Windows or doors within the combination can be fixed or venting. 2 . CONS IDER THE REQUI RE D WI ND LOA D (D E SI G N PR E S S U R E ( DP ) ) The Design Pressure (DP) is the wind load pressure that the window assembly must withstand. The Design Pressure (DP) should be determined by the project engineer or architect but can also be provided by the local code official. ASCE 7-10, Minimum Design Loads for Buildings and Other Structures contains the generally accepted method for determining Design Pressure (DP) for components and cladding based on building size and shape, geographical location, topographical factors, building use and location on the building's surface. 3 . CONS IDER IF THE IN DI V I D UA L WI ND O WS A ND  /  O R DO O R S W IT H IN T H E CO M B IN AT I O N M E E T T H E REQU IRED D ESIGN P RE SSU RE ( D P ) Each Pella window and door is rated to withstand a certain level of wind loading. The Design Pressure (DP) determined in step 2 should also be used to specify window and door performance. The Product Performance Section provides more detailed information on the relationship between Design Pressure (DP) and the Performance Class and Performance Grade (PG) ratings used to specify window or door performance. See the Products section of the Architectural Design Manual to ensure that each window or door can withstand the required design wind load pressure. 4 . CONS IDER IF THE GL A ZI NG WI THI N E ACH P RO D U CT CAN W I T H STAN D T H E R E Q U IR E D DE S I GN P R E S S U R E ( D P) ASTM E 1300 requires that glazing be of adequate strength to resist excessive deflection under wind load. The Glazing Performance Charts in this document, contains glazing Design Pressure (DP) charts. Select the appropriate glazing type and / or thickness required to meet the Design Pressure (DP). Pella sales representatives can utilize the Pella quoting system to determine the glazing Design Pressure (DP) of a specific product.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-10

COMBINATION DESIGN CONSIDERATIONS PR ODUCT PERF ORM A N C E

5 . CONSID E R IF THE CO MB I NATI O N WI L L B E FACTO RY AS S E M B LE D O R N O N - FACTO RY AS S E M B LE D Use the combination size tables found in the Installation Systems section to determine if the combination is available factory assembled. If the combination is not found in the size tables, it is not available assembled from the factory. In this case, the non-factory reinforcing mullion table must be used. Also consider factors such as installation method, handling and accessibility to the opening. Conditions specific to the project may require a combination be assembled in the opening, or separated into multiple combinations. 6 . CONS IDER THE REQUI RE ME NT FO R SP RE A D O R RE I N F O R C IN G M U LLIO N S Placing windows and doors in combination creates joints or mullions that may need reinforcing. Spread mullions can also be utilized to achieve an aesthetic element. In order to ensure that a given combination will withstand the Design Pressure (DP) determined in step 2, use the reinforcing mullion tables in the Installation Systems section. These tables are organized by joint type and assembly type (factory vs. non-factory assembled). Use the graphical representation of each joint type to determine which joint type(s) are contained within the combination. The reinforcing tables consider structural performance only. Performance Class and Performance Grade (PG) ratings apply to single units only. See the Size and Performance Data page within each product section for more information. Also consider the tables for dead load when placing windows or transoms over awnings or doors. 7 . CONS IDER THE AP P RO P RI ATE MU L L I O N RE I NF O RC IN G The reinforcing mullion tables on www.PellaADM.com are intended to aid in the selection of reinforcing members to help the combination resist the forces placed upon it by wind loads and loads caused by other units within the combination. Refer to the Installation Systems section for instructions on how to specify the correct reinforcing for the window or door combinations. If spread mullions are desired for aesthetic reasons, use the tables to determine if the spread mullion meets or exceeds the required Design Pressure (DP). 8 . DETERMIN E IF SUBSILL I S RE Q U I RE D Subsill systems that weep incidental moisture to the exterior are recommended for water management in openings where the potential for water infiltration is increased and may not be adequately managed by the building weather barrier, flashings and drainage system. Sample conditions include, but are not limited to increased level of exposure due to multi-story construction, high weather exposure, difficulty recaulking, non-standard installation methods, or when there are multiple units joined within the opening. 9 . DETERMIN E ROUGH O P E NI NG SI ZE DATA The Installation Systems section contains recommendations for each installation type. Use the recommendations in this section to determine rough opening clearance dimensions as well as if subsill, frame expander, or expansion mullion accessories are required. More information on Pella® accessories can be found in Installation Systems section on www.PellaADM.com. Add any applicable frame, accessory, and mullion dimensions to arrive at the overall opening dimensions.

TYPICA L COMBIN ATION TY P E S

Horizontal Windows

Four-Way Windows

Vertical Windows

Three-Way Door Transom

Three-Way Windows

Four-Way Door

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-11

USE AND INSTALL ATION PRO DUCT PERFO R M A N C E

U SE AND IN STA LLATIO N CO N SIDE R AT IO N S The following notes are important considerations regarding the use and installation of Pella® products. Should you have any questions regarding the use and installation of any Pella products, contact your local Pella representative.

REQU IREME NTS FOR COMPLYIN G W IT H A PPL ICA B LE B U I LD I N G CO D E S Regulations governing the design and use of glazed windows and doors vary widely. The building owner, architect, contractor, installer and / or consumer are responsible for selecting products which conform to all applicable laws, regulations and building codes.

Pella Corporation accepts no responsibility whatsoever for failure of building owner, architect, contractor, installer, and/or consumer to comply with all applicable laws, ordinances, safety and building codes. Pella Corporation shall not be responsible for windows and doors, not installed in compliance with applicable laws, codes, or other regulations.

GL AZ ING A ND S A FE TY G L A SS Pella products are standard-glazed to withstand a minimum of 20 psf Design Pressure (DP). Specific code requirements, windloading and / or design specifications may require special glazing. Unless specifically noted or ordered, Pella products are not provided with safety glass. Glass installed in areas subject to human impact must be safety-glazed according to the Safety Standard for Architectural Glazing Materials (16 CFR 1201), issued by the U.S. Consumer Product Safety Commission or as prescribed by other building codes.

REQU IREME NTS FOR PR O PE R IN STA L L AT IO N All detail representations in this manual only pertain to the use of Pella products manufactured by Pella Corporation and are strictly limited to the published specifications and to the use of Pella products. Details shown herein illustrate typical general methods of installing Pella products manufactured by Pella Corporation and are to be used as guidelines only. Refer to the appropriate installation instructions and/or installation shop drawings. The performance of any building is dependent upon the design, installation, and workmanship of the entire building system. Pella Corporation strongly recommends consulting an experienced architect, contractor, or structural engineer prior to installation of Pella products. The individual (building owner, architect, contractor, installer and / or consumer) responsible for the project must take into account local conditions, federal, state, and local building codes, inherent component limitations, the effects of aging and weathering on building components, and other design issues relevant to each project. Over time, all window and door systems may have some water infiltration; it is important that the wall system be designed and constructed to properly manage moisture. Pella Corporation is not responsible for claims or damages caused by unanticipated water infiltration; deficiencies in building design, construction and maintenance; failure to install Pella products in accordance with Pella approved methods; or the use of Pella products in systems which do not allow for proper management of moisture within the wall systems. The determination of the suitability of all building components, including the use of Pella products, as well as the design and installation of flashing and sealing systems are the responsibility of the building owner, architect, contractor, installer and / or consumer. Consult with your local Pella representative on large and / or complex installations.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-12

USE AND INSTALL ATION PR ODUCT PERF ORM A N C E

N OT E ON B A RRIE R WA L L SYST E MS

EXT ERI OR INS ULATIO N A N D FIN ISH SYST E MS ( E IFS ) A N D OTHE R N O N -WATE R M A N AG E D WA LL SY STE M S Significant concerns have been raised regarding moisture problems including unacceptable water infiltration associated with the use of barrier wall systems which do not allow for the proper management of moisture within the wall system, such as EIFS (also known as synthetic stucco) and other stucco-like systems (sometimes referred to as “hard coat” or “one-coat” stucco) that use EIFS like coating systems, but omit the foam board. Specifically, a large number of EIFS installations, as well as other barrier type wall systems, have been found to have problems with excessive moisture in the wall cavity. The basic problem is that barrier systems do not account for the fact that moisture can—and will—penetrate the exterior wall surface. Once moisture penetrates a barrier wall, it remains trapped inside the wall cavity, where it may damage and even rot sheathing, framing and other moisture-sensitive building elements. In a large number of cases, the moisture problems have caused deterioration serious enough to require extensive repairs. These problems often show up where there are penetrations in the building’s exterior, such as at windows and doors, however moisture problems are not limited to these areas. It is generally agreed that the root cause of barrier-system moisture problems is the inability of such systems to allow moisture that should be expected in any building exterior system to weep or evaporate to the building exterior, and that the problems are not caused by the penetrating components themselves, whether they are windows, doors, decks, or other features. As a result of these problems, except in extremely arid climates, barrier-type systems are not recommended over wood frame construction or over any other substrate that could be adversely affected by moisture. Pella Corporation will not be responsible for claims or damages caused by anticipated or unanticipated water infiltration, deficiencies in building design, construction, and maintenance, failure to install Pella products in accordance with approved methods, or the use of Pella products in systems, such as barrier wall systems, which do not allow for the proper management of moisture within the wall system. Pella products should not be used in barrier Exterior Insulation and Finish Systems, (EIFS) (also known as synthetic stucco) or other non-water managed systems. Except in the states of California, New Mexico, Arizona, Nevada, Utah and Colorado, Pella makes no warranty of any kind on and assumes no responsibility for Pella windows and doors installed in barrier EIFS. In the states listed above, the installation of Pella Products in EIFS or similar systems must be in accordance with Pella’s instructions for that type of construction. Contact your local Pella representative for considerations with non-water managed wall systems and on large or complex installations. Moisture infiltration problems in any type of building can be reduced by proper flashing and/or sealing around all building penetrations, including windows and doors. Proper flashing under and around window and door openings can reduce moisture problems in barrier systems, however the performance of any building system is also dependent upon the design and workmanship of the entire building system, which must take into account local conditions, climate, building codes, inherent component limitations, and the effects of aging and weathering on building components. Even when general installation recommendations are made by Pella Corporation, the determination of the suitability of all building components for each project, as well as the design and installation of flashing and sealing systems, are the responsibility of the architect, contractor, installer, and/or the manufacturer of the exterior finish system specified for the project.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-13

ELEMENTS OF GL AZING PERFORMANCE

PRO DUCT PERFO R M A N C E

There are several elements of glazing performance, including U-Factor, Visible Light Transmission and Solar Heat Gain Coefficient. Definitions of the glazing performance elements discussed in this manual are below. Glazing performance data is based on the WINDOW 5.2 and THERM 5.2 computer programs for analyzing energy performance. WINDOW and THERM software are the latest technology in simulating energy performance. When comparing performance with other manufacturers, it is important to verify how the values were determined.

G L AZ I NG PE RFORMA N CE T E R MS I NS I D E G L A S S S U RFACE T EM P E RAT U RE

The temperature on the inside surface of the glass at the center of the glass. It is based on an outside temperature of 0° F, inside temperature of 70° F, and an approximate 15 mph outside wind. Room side barriers to interior air flow (blinds, shades, drapes, screens) tend to lower inside glass surface temperature and humidity levels at which condensation occurs. Outside screens tend to raise inside glass surface temperature and level of humidity at which condensation occurs.

REL ATIVE H E AT GA I N

The actual amount of heat energy (BTU per hour-sq.ft.) that enters a room through a glazing system (Assumes typical daytime summer conditions of 89° F outside and 75° F inside). The lower the value, the better the unit keeps out heat energy.

SHAD IN G COE FFICI E N T

The amount of solar heat that passes through a particular glazing system divided by the amount that passes through a single piece of 1/8" thick clear glass (Assumes 89° F outside and 75° F. inside). The lower the value, the better the glass keeps out solar heat.

SOL A R H E AT GA IN COEFFICIE NT

The amount of solar heat that enters a room through a window or door (total unit) or glazing system (center-glass), divided by the amount that is actually contacting the exterior of the unit (Assumes 89° F outside and 75° F inside). The lower the value, the better the unit or glazing keeps out solar heat.

U-FACTO R

The rate of heat transfer (BTU per hour-sq. ft.) through a window or door (total-unit) or glazing system (center-glass) (Assumes 0° F outside at night with an approximate 15 mph wind and 70° F inside). The lower the U-Factor, the better the insulating properties of the unit or glazing system.

UV T R A N S MIS S ION

The percentage of ultra violet rays that enter a room through the glazing system. It is a predictor of potential fading damage. Lower percentages indicate less fading potential (UV rays are those with a wavelength ranging from 0.30 to 0.38 microns).

L BL DA MAGE FUN CT IO N

This function, developed by Lawrence Berkeley Laboratories, is another way of expressing UV Transmission. It is a better predictor of potential fading damage than UV Transmission. Lower values indicate less fading potential. The LBL Damage Function is a weighted value, which takes into account that as the wavelength of the UV rays gets shorter, the fading damage potential increases. Therefore, two glazing systems with the same UV Transmission may have different LBL Damage Function values because one allows more shorter wavelength rays to pass through than the other.

VISIB LE LIGH T TRANS MIS S IO N

The percentage of visible light that is transmitted through the window or door (total-unit) or glazing system (center-glass).

CONDE N S ATION RESISTA NCE

A relative indicator of a fenestration product’s ability to resist the formation of condensation at a specific set of environmental conditions. The higher the Condensation Resistance value the greater the resistance to the formation of condensation. Actual condensation performance is a function of temperature, humidity and air movement. For more information see NFRC 501-2010, “User Guide to the Procedure for Determining Fenestration Product Condensation Resistance Rating Values”

Total-unit values can be found in the individual product sections.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-14

GL AZING PR ODUCT PERF ORM A N C E

Pella offers a variety of glazing systems and options for optimal design, performance and budget flexibility. Please visit www.PellaADM.com for complete product glazing information. GLA Z ING TYPE D ua l -Pa ne I n su l at i ng Glass

Standard insulating glass consisting of two panes of glass creating an insulating sealed gas space.

Tr i pl e -Pa ne I n su l at i ng Glass

Insulating glass consisting of three panes of glass that create two sealed insulating gas spaces.

D es i g ne r Series® Tr i pl e -Pa ne Glaz ing

This product combines a Dual IG with an extra hinged glass panel to achieve thermal performance comparable to triple IG. The interior air space is not sealed to allow for Designer Series® between-the-glass accessories to be installed or removed.

I NS U LAT ED GL ASS OPTI O NS / LO W- E TY P E S A d va n c e d Low-E

Pella's standard Low-E coating that is commonly used in locations with hot and cold weather extremes. Features insulating glass with a Low-E coating to increase comfort year-round while blocking 84% of the sun's ultraviolet rays helping to protect your home from fade damage. Advanced Low-E has SHGC significantly lower than clear glass or NaturalSun Low-E. It is a good general purpose coating.

Sun De f e nse™ Low-E

Commonly used in locations needing superior solar protection, high levels of energy efficiency and year-round comfort. Features insulating glass with a special SunDefense™ Low-E coating that reflects more of the sun's heat to help keep your home cooler in the summer. SunDefense™ is recommended in southern climates and in more northern regions where there is a significant amount of direct sunlight. This may be on un-shaded east or west exposures, especially if the windows are looking over a body of water and there is no shade or overhang. SunDefense™ Low-E blocks 94% of the sun's ultraviolet rays has a very low SHGC while maintaining a clear unfiltered view.

A d va n c e dCo mfort Low-E

Commonly used in locations in need of minimal winter heat loss and reduced solar gain. Includes the advantages of Advanced Low-E plus further improvement in insulating performance (lower U-value) through an additional Low-E coating on the insulating glass. This low-E glass has the lowest U-value of all Pella’s dual glazed offering and is a good selection for customers wanting to meet the more stringent requirements of some local energy codes.

N at u ra l S un Lo w-E

Commonly used in locations where maximum solar heat gain is desired. This would be intended for Canada and the far Northern regions of the US. It may also be used in regions further south if the home or landscape is designed to provide summer shading on the windows. This coating would be considered the best choice for “Passive Solar” homes. You may consider putting NaturalSun on the southern exposed windows while using Advanced Low-E on the other sides of the home. There is a slight visual difference with the different coatings, but if one is looking out at different directions in the room this should not be noticeable.

A D DIT IONAL GL ASS OPTI O NS O bsc ure Glass

Commonly used in intimate spaces such as the bathroom and bedroom. Creates privacy while allowing natural light to enter. Available in a variety of textured surfaces, will let sunshine in to increase comfort. Thermal and SHGC of obscure IG is equal to clear glass when combined in IG with the same Low-E coatings.

Ti nt e d G l ass (Bro nz e, Gra y a n d Green)

Commonly used in rooms that receive a lot of sun exposure. Like sunglasses, windows with tinted glass block the sun's rays, so they're useful in controlling glare; plus, they keep rooms that get direct sun cooler. The tint also helps block the view into a home.

Spa n dre l Glass

Commonly used between sections of a building including the area between floors, columns, ceilings, and other small or large spaces. The main aesthetic purpose of spandrel glass is to create an overall uniform appearance. Spandrel is created using fired-on frit methods. This process includes a ceramic frit that is fused to the glass using high-heat fusing methods. This technique creates a glass that will not fade over time. In addition, spandrel is up to five times stronger than annealed glass.

L a m i n at e d Glass

Commonly used in locations in need of added security, ultraviolet (UV) protection and noise reduction. A polymer layer sandwiched between two layers of glass that cuts outside noise and harmful UV rays and offers added protection against intruders and forced entry. The interlayer holds the glass together if it's shattered.

I m pa c t -Resistant Gl a ss   1

Available in Hurricaneshield® impact-resistant products, commonly used in locations that endure hurricane-force winds or where additional security or noise reduction is desired. An advanced polymer layer is sandwiched between two layers of glass, offering strong protection from flying debris - while increasing the safety, security, ultraviolet protection and energy efficiency of a home.

GAS FILL / HIGH ALTITU D E A rg on

Argon gas is commonly added to insulating glass assemblies to improve the insulating performance.

K rypt on

Krypton gas is added to insulating glass assemblies to improve the insulating performance.

H i g h a l t i t ude

For locations at high altitude the air filled insulating glass assembly is typically vented to prevent over pressurization of the system.

H i g h a l t i t ude w it h Arg on

For locations at high altitude this product is a sealed, argon filled, insulating glass. The unit is manufactured at a pressure level tailored for the target elevation.

NOTE: Any product with argon and Low-E is referred to as Insulshield

(1) Impact-resistant insulating glass is made up of a sheet of tempered glass combined with a sheet of laminated glass. For best performance, the laminated glass may be the interior or exterior pane of insulating glass, depending on the product.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-15

GL AZING PRO DUCT PERFO R M A N C E

ENERGY STA R® PE RFO R MA N CE The U.S. Environmental Protection Agency's (EPA) ENERGY STAR program uses "whole unit" (glass and frame) SHGC ratings and U-Factors to measure window and door energy efficiency. To ensure your product will deliver ENERGY STAR performance, refer to the chart and map below to help determine ENERGY STAR guidelines for your area of the country. Then compare these numbers with the "whole unit" SHGC ratings and U-Factors printed on the NFRC label found on every window and door. Pella has some of the lowest U-Factors in the industry and offers the energy-efficient options that will meet or exceed ENERGY STAR criteria in all 50 states. E N E R GY STAR “ W H O LE U N I T ” R E S IDE N T I AL P E R F O R M AN C E GU IDE LIN E S : 2 0 1 6 ( V E R S IO N 6 ) C R I T E R IA Windows

U - FACTO R 0.27 or lower

Any

0.28

0.32 or higher

0.29

0.37 or higher

Northern

0.30

0.42 or higher

North-Central

0.30 or lower

0.40 or lower

South-Central

0.30 or lower

0.25 or lower

Southern

0.40 or lower

0.25 or lower

Doors CL IMATE ZO NE S

S H GC

U - FACTO R

S H GC

Solid panel (all regions)

0.17 or lower

No rating

1/2 -light or less (all regions)

0.25 or lower

0.25 or lower

0.30 or lower

0.40 or lower

0.30 or lower

0.25 or lower

Mo re tha n 1 /2  - l i g ht Northern North-Central South-Central Southern

Maximum Air Leakage for Windows and Sliding Doors: 0.3 cfm/ft2 Maximum Air Leakage for Hinged Doors: 0.5 cfm/ft2 Pella® Designer ProLine Series® 450 Series

Fixed Frame Direct Set

Pella® Impervia

Pella® 350 Series



































































GL AZ I NG O PTIO N S

Architect Series®

Clear Insulating Glass





Advanced Low-E Insulating glass with argon 1





SunDefense™ Low-E Insulating glass with argon 1



AdvancedComfort Low-E NaturalSun Low-E Insulating glass Triple-pane glass with snap-in between-the-glass options

Pella® Encompass 250 by Pella® Series



Triple-Insulating Glass





Laminated glass



HurricaneShield® products with impact-resistant glass



Tinted glass



Reflective glass





Spandrel glass or panels

  2





 



 



(1) Optional high-altitude Advanced Low-E insulating glass does not contain argon gas in most products. (2) Not available on hinged or sliding patio doors. Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-16

PR ODUCT PERF ORM A N C E

GL AZING Center of Glass Per formance

C ENTER OF GLA S S PE RFO R MA N CE CO MPA R ISO N G U I D E

1—

—2

—4

Dual-Pane Insulating Glass

(1) Performance of products with 3/4", 13/16" IG or 2.5 mm glass is within 10% of those stated for 3 mm glass. (2) 4 mm and 5 mm glass construction perform similar to 3 mm within 10%.

% Relative Humidity @70°F when condensation appears on room side

% UV Transmission

LBL Damage Function

Low-E Coating on Surfaces #

Inside Glass Surface Temp (˚F)

82

44

39

58

0.61

65

56

61

5

0.21

70

56

61

14

0.31

2

69

47

44

14

0.31

2, 4

79

55

59

29

0.42

3 or 2*

45

56

61

7

0.19

3

39

56

61

7

0.18

3

55

56

61

5

0.19

3

68

53

55

0

0.20

2 or 3**

63

53

55

0

0.16

2 or 3**

82

46

41

54

0.58

63

56

61

4

0.20

68

56

61

13

0.30

2

66

47

44

12

0.29

2,4

77

55

59

24

0.38

3 or 2*

40

56

61

6

0.16

3

34

56

61

6

0.16

3

51

56

61

4

0.17

3

67

56

61

0

0.17

2 or 3**

62

56

61

0

0.14

2 or 3**

55

60

71

4

0.19

2, 5

70

60

71

13

0.29

2, 5

53

59

68

4

0.19

2, 5

69

59

68

12

0.28

2, 5

55

62

76

4

0.19

2, 5

70

62

76

13

0.29

2

1—

3—

Exterior

Exterior

D ua l -Pa ne Insulating Gla s s , A rgo n filled 1 1 / 1 6 " o vera l l thi c k n e ss 0.48 0.78 0.89 186 Clear (air filled) 3 mm 1 0.24 0.27 0.31 66 SunDefense™ Low-E 3 mm 1 0.25 0.37 0.42 88 Advanced Low-E 3 mm 1 0.20 0.36 0.42 86 3 mm 1 AdvancedComfort Low-E 0.26 0.68 0.79 161 NaturalSun Low-E 3 mm 1 5 mm/3 mm 0.25 0.33 0.38 79 Bronze Advanced Low-E 5 mm/3 mm 0.25 0.30 0.34 73 Gray Advanced Low-E 5 mm/3 mm 0.25 0.32 0.37 77 Green Advanced Low-E 3 mm/6 mm 0.31 0.37 0.42 89 Advanced Laminated Low-E 3 mm/6 mm 0.31 0.28 0.32 68 SunDefense™ Laminated Low-E D ua l -Pa ne Insulating Gla s s , A rgo n filled 1 " o verall t h i c k n e ss 6 mm 0.49 0.75 0.87 181 Clear (air filled) 6 mm 0.25 0.27 0.31 65 SunDefense Low-E 6 mm 0.25 0.35 0.41 84 Advanced Low-E 6 mm 0.20 0.35 0.40 82 AdvancedComfort Low-E 6 mm 0.26 0.64 0.74 150 NaturalSun Low-E 6 mm 0.25 0.30 0.34 71 Bronze Advanced Low-E 6 mm 0.25 0.27 0.31 64 Gray Advanced Low-E 6 mm 0.25 0.29 0.33 69 Green Advanced Low-E 5 mm/10 mm 0.25 0.36 0.41 85 Advanced Laminated Low-E 5 mm/10 mm 0.24 0.27 0.31 66 SunDefense™ Laminated Low-E 1 " Tr i pl e -Pane Insulating G las s —Pella 2 5 0 Series 3 mm 0.16 0.31 0.36 74 Advanced Low-E 3 mm 0.17 0.56 0.64 131 NaturalSun Low-E 4 mm 0.19 0.31 0.35 73 Advanced Low-E 4 mm 0.20 0.54 0.62 127 NaturalSun Low-E 1 - 1/4" Triple-Pane Insulat ing G las s —Pella 3 5 0 Series 0.13 0.31 0.36 73 Advanced Low-E 3 mm 2 0.14 0.56 0.64 131 NaturalSun Low-E 3 mm 2

% Visible Light Transmission

Relative Heat Gain

Shading Coefficient (SC)

Solar Heat Gain Coefficient (SHGC)

U-Factor

TYP E OF GLA ZIN G

Glass Thickness

This chart is an overview of the typical glass types that are available from Pella. The types of glass and the glass thickness vary by brand. For complete Glazing Performance data, including Obscure and High Altitude 2 glazing, please go to the appropriate product section of www.PellaADM.com.

3— —2

2

2

5— —4

Triple-Pane Insulating Glass

* Wood products, Pella® Impervia and Pella 350 Series: Side 3, Pella 250 Series and Encompass by Pella®: Side 2 ** Varies by product.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-17

GL AZING Center of Glass Per formance Triple-Pane Glass - Wood and Aluminum Clad Wood

PRO DUCT PERFO R M A N C E

C ENT ER O F GLA S S PE R FO R MA N CE CO MPA R ISO N G U I D E

LBL Damage Function

3 mm 1

0.32

0.70

0.80

166

75

52

53

48

0.52

3 mm 1 3 mm 1 3 mm 1 3 mm 1 5 mm/3 mm 5 mm/3 mm

0.19 0.20 0.16 0.20 0.21 0.21

0.25 0.34 0.33 0.62 0.29 0.27

0.29 0.39 0.38 0.72 0.34 0.31

61 81 78 147 71 65

59 64 63 73 41 36

59 59 61 58 58 58

68 68 73 66 66 66

4 12 12 24 6 6

0.19 0.28 0.27 0.37 0.17 0.17

2 2 2, 4 3 3 3

Argon

5 mm/3 mm 0.21

0.29

0.33

69

50

58

66

5

0.18

3

Relative Heat Gain

% UV Transmission

Low-E Coating on Surfaces #

Inside Glass Surface Temp (˚F)

% Visible Light Transmission

Shading Coefficient (SC)

Solar Heat Gain Coefficient (SHGC)

Air Argon Argon Argon Argon Argon Argon

U-Factor

% Relative Humidity @70°F when condensation appears on room side

G las s , 5 / 8 " w it h Hinged G las s Pa n e l - De si g n e r S e r i e s®

G las s , 1 " - A rc h it ec t Series ® Argon

3 mm

0.17

0.33

0.38

79

62

60

73

7

0.23

2,5

Argon Argon Argon Argon Argon Krypton Krypton Krypton Krypton Krypton

3 mm 3 mm 4 mm 4 mm 4 mm 3 mm 3 mm 3 mm 4 mm 4 mm

0.17 0.17 0.19 0.20 0.19 0.12 0.12 0.12 0.14 0.14

0.56 0.25 0.33 0.54 0.25 0.33 0.56 0.24 0.32 0.54

0.64 0.29 0.38 0.62 0.29 0.38 0.64 0.28 0.37 0.62

131 59 78 127 60 78 131 58 76 127

70 57 61 69 56 62 70 57 61 69

60 60 59 59 59 63 63 63 62 62

73 73 69 69 69 78 78 78 78 78

13 2 7 12 2 7 13 2 7 12

0.29 0.16 0.22 0.28 0.16 0.23 0.29 0.16 0.22 0.28

2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,5

Krypton

4 mm

0.13

0.24

0.28

58

56

62

78

2

0.16

2,5

G las s , 1 - 1 / 8 " A luminum Clad Fi xe d Fra m e Di re c t S e t Argon

3 mm

0.15

0.33

0.38

79

62

61

73

7

0.23

2,5

Argon Argon Krypton Krypton

3 mm 3 mm 3 mm 3 mm

0.15 0.14 0.11 0.12

0.56 0.25 0.33 0.56

0.64 0.28 0.38 0.65

131 59 77 131

70 57 62 70

61 61 63 63

73 73 78 78

13 2 7 13

0.29 0.16 0.23 0.29

2,5 2,5 2,5 2,5

Krypton

3 mm

0.11

0.24

0.28

57

57

63

78

2

0.16

2,5

G las s , 1 - 1 / 4 " A luminum Clad Fi xe d Fra m e Di re c t S e t Argon

4 mm

0.15

0.32

0.37

77

61

61

73

7

0.22

2,5

Argon Argon Krypton Krypton

4 mm 4 mm 4 mm 4 mm

0.15 0.14 0.11 0.12

0.54 0.25 0.32 0.54

0.62 0.28 0.37 0.62

127 59 76 126

69 56 61 69

61 62 63 63

73 78 78 78

12 2 7 12

0.28 0.16 0.22 0.28

2,5 2,5 2,5 2,5

Krypton

4 mm

0.11

0.24

0.28

57

56

63

78

2

0.16

2,5

G las s , 1 - 3 / 8 " A luminum Clad Fi xe d Fra m e Di re c t S e t Argon

5 mm

0.15

0.32

0.37

76

60

61

73

6

0.22

2,5

Argon Argon Krypton Krypton

5 mm 5 mm 5 mm 5 mm

0.15 0.14 0.11 0.12

0.53 0.24 0.32 0.53

0.61 0.28 0.37 0.61

125 58 75 124

68 55 60 68

61 62 63 63

73 78 78 78

12 2 6 12

0.27 0.16 0.22 0.27

2,5 2,5 2,5 2,5

Krypton

5 mm

0.11

0.24

0.28

57

55

63

78

2

0.16

2,5

Exterior

1—

3— —2

5— —4

Exterior

Tr i pl e -Pa ne Insulating Clear SunDefense™ Low-E Advanced Low-E AdvancedComfort Low-E NaturalSun Low-E Bronze Advanced Low-E Gray Advanced Low-E Green Advanced Low-E Tr ipl e -Pa ne Insulating Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E Tr i pl e -Pa ne Insulating Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E Tr i pl e -Pa ne Insulating Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E Tr i pl e -Pa ne Insulating Advanced Low-E NaturalSun Low-E SunDefense Low-E Advanced Low-E NaturalSun Low-E SunDefense Low-E

Gap Fill

TY P E OF GLA ZIN G

Glass Thickness

This chart is an overview of the typical glass types that are available from Pella. The types of glass and the glass thickness vary by brand. For complete Glazing Performance data, including Obscure and High Altitude glazing, please go to the appropriate product section.

1—

3— —2

—4

5— —6

1) Performance of Designer Series products with 2.5 mm glass is within 5% of those stated for 3 mm glass.

Triple-Pane Insulating Glass

Designer Series® Triple-Pane Glazing System

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-18

PR ODUCT PERF ORM A N C E

HURRICANESHIELD ® IMPACT-RESISTANT GL ASS WINDOWS AND PATIO DOORS

The impact-resistant glazing incorporated into HurricaneShield impact-resistant windows and doors is a high-performance, laminated glass with either SentryGlas® Plus (SGP) technology from DuPont® or PVB technology, also from DuPont. This laminated glass is designed to offer outstanding protection to keep the glazing intact after the glass is impacted by hurricane wind-driven flying debris, as tested per industry standards listed below. SGP has a laminate interlayer made from an advanced material called ionoplast. SGP is much stronger than PVB. PVB is a DuPont Butacite® polyvinyl butyral laminate traditionally used in automotive windshields since 1938. Pella’s HurricaneShield impact-resistant products are designed and tested to meet or exceed many but not all Gulf Coast and Atlantic Coast hurricane building code requirements. Pella has HurricaneShield impact-resistant windows and doors approved for use in Miami‑Dade County, Florida as well as other areas along the Gulf and Atlantic Coasts. HurricaneShield impact-resistant windows and doors are tested to numerous industry standards consistent with the intended application. These standards include: ASTM E1886-13a (and previous versions) ASTM E1996-14a (and previous versions) Miami-Dade County Florida TAS 201-94 Miami-Dade County Florida TAS 202-94 Miami-Dade County Florida TAS 203-94

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-19

BETWEEN-GL ASS WINDOW FASHIONS

PRO DUCT PERFO R M A N C E

Pella’s unique between-glass Slimshade® blinds and cellular fabric shades improve window performance. In addition to reducing fading damage to interior furnishings, between-glass accessories enhance thermal performance of the window or door. When the Slimshade blind or cellular fabric shade is in the closed position, the U-Factor and shading coefficient are significantly improved (reduced). Although operation of Slimshade blinds and cellular fabric shades is simple, the analysis of the heat transfer through a window or door with a betweenglass accessory is very complex. There is currently no industry-endorsed simulation tool that can be used to analyze the performance of Slimshade blinds or cellular fabric shades. Pella has conducted independent tests, using NFRC methods. Results are below. All values shown are for 25" x 59" Designer Series® casement window.

Winter Total-Unit U-Factor 1

Solar Heat Gain Coefficient 1 (SHGC)

%Visible Light Transmittance

%UV Light Transmittance

with Low-E IG with Argon and clear HGP

0.29

0.25





with white raise & lower Slimshade blinds closed

0.28

0.13





with golden raise & lower Slimshade blinds closed

0.26

0.16





with alabaster cellular fabric shades closed

0.26

0.16





with bamboo room darkening cellular fabric shades closed

0.26

0.10





with Low-E IG with Argon and Low-E HGP

0.27

0.24





with white raise & lower Slimshade blinds closed

0.26

0.10





with golden raise & lower Slimshade blinds closed

0.25

0.15





with alabaster cellular fabric shades closed

0.24

0.14





with bamboo room darkening cellular fabric shades closed

0.24

0.09





Glazing System T RIPLE-PAN E SYSTEM

T RIPLE-PAN E SYSTEM

(—) = Test data not available. (1)  U-Factor and SHGC for the Slimshade blinds and cellular fabric shades were reported by Architectural Testing Inc. (ATI), based on solar calorimeter tests. These results are not certified by NFRC.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-20

PR ODUCT PERF ORM A N C E

HIGH ALTITUDE GL ASS

The average barometric pressure decreases as the elevation above sea level rises. When standard insulating glass manufactured at one altitude is shipped to a higher altitude, the decreased air pressure will cause the glass to deflect. The amount of glass deflection depends upon many factors, such as glass thickness, air space width, air space temperature, difference in altitude, and size of the piece of glass. The best way to avoid insulating glass deflection in high altitudes is to specify Pella’s optional high altitude glass when needed. High altitude glass has a hidden capillary tube installed that serves as a “breather”, allowing the air between the two pieces of glass to equalize with outside air in high altitudes. High altitude insulating glass does not contain argon. Therefore, use the following guidelines to determine when high altitude glass is required. Example: A residential home is 7,000 feet above sea level. The product to be used in the home is Architect Series® casement windows with 5/8" insulating glass. Frame sizes of the units are as follows:

17" x 17" and 29" x 47"

To determine if high altitude glass is needed, you must first convert the frame sizes to glass sizes. The glass-to-frame difference for casements is 5". So the glass size of the units listed above are: 12" x 12" and 24" x 42" The shortest glass dimension of the first size is 12". According to the chart below for 5/8" glass, the altitude limit for this size is 5,000 feet. Since the home is at 7,000 feet, you must order high altitude glass for this size of unit. The second size has 24" as its shortest glass dimension. According to the chart, it has an altitude limit of 7,000 feet, which is the same altitude of the home, so you do not need high altitude glass for this size of unit.

Insulating Glass

5/8" or 3/4"

1" Dual-pane or Triple-pane Glazing

Shortest Glass Dimension (inches)

Altitude Limit for Standard Glass (feet above sea level)

≤ 10

3,000

≥10 and <15

5,000

≥15 and <20

6,000

≥20 and <25

7,000

≥25 and <30

9,000

≥30

10,000

≤ 15

3,000

≥15 and <20

3,500

≥20 and <30

4,500

≥30 and <40

6,000

≥40 and <50

8,000

≥50

10,000

Triple-Pane glazing high-altitude glass is not available with argon or krypton gas fill.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-21

PRO DUCT PERFO R M A N C E

ARGON FILLING OF INSUL ATING GL ASS

Certain Pella products with insulating glass use argon gas in the sealed air space to improve the insulating value of the glazing. The following paragraphs explain argon filling and how argon dissipates over time. Using available argon filling equipment, it is not possible to achieve 100% argon filling. Insulating glass size, geometry, addition of internal grilles, etc. also influence the effectiveness of the argon filling process. For example, grilles inside the airspace contain air, and the air in the grille, if not completely removed, will reduce the overall initial argon percent fill level. Since argon makes up approximately one percent of the normal atmosphere, the higher concentration of argon in the sealed unit is a driving force that causes the argon to slowly permeate through insulating glass edge seals to the ambient atmosphere. This driving force is present in all insulating glass with argon units regardless of which manufacturer produced them. Likewise, there is a similar driving force causing air (O 2 and N 2) to permeate into the insulating glass unit. When argon permeates through the seal system of insulating glass units, the U-Factor will slightly increase (a reduction in thermal performance). The following are total unit U-Factor (as determined by the LBL WINDOW and THERM Computer Programs) for a typical casement unit at various argon levels: As can be seen by this data, the increase in U-Factor is minimal when argon levels are decreasing by one percent per year. For instance, for an initial argon level of 90%, the total unit U-Factor would be 0.37. If there were an argon-air exchange of one percent per year, in 20 years the argon level would be 70%, giving a total unit U-Factor of 0.38.

% Argon

Winter Total Unit U-Factor

100

0.36

90

0.37

80

0.37

70

0.38

60

0.38

50

0.39

Pella’s insulating glass with argon is available in most standard Pella products. See your local Pella representative for more information on this energy-efficient glazing option. Pella Corporation warrants that its insulating glass with argon is NFRC compliant only at the time of manufacture. Pella Corporation makes no warranty regarding the rate of dissipation of argon or the amount of argon remaining in the window over time.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-22

PR ODUCT PERF ORM A N C E

GL ASS DESIGN PRESSURE PERFORMANCE CHARTS ALL PRODUCTS

Use the glass charts on the following pages to verify that the glass thickness of a unit will meet the specified design pressure. These charts show required nominal thickness of rectangular plate, float and sheet glass, based on minimum thickness allowed in ASTM E 1300-04 (Contact your local Pella representative for performance of glass types and thicknesses not shown). The charts are set up for single-pane annealed glass, so there is a multiplying factor for heat-strengthened and tempered glass, as well as sealed insulating glass. These factors are listed below:

Heat-strengthened single-pane glass

2.0

Tempered single-pane glass

4.0

Annealed insulating glass 1

1.8

Heat-strengthened insulating glass 1

3.6

Tempered insulating glass 1

7.2

(1) Interior hinged glass panels must be glazed to the appropriate single-pane requirement. Factors only apply if both panes of the insulating glass are equal in thickness and tempered.

Example:  Determine if 2.5 mm annealed insulating glass will work for a 41" x 53" (frame size) clad casement with an established design pressure of 28 psf (1.34 kPa).

2.5 mm (3/32 inches)

3.  Convert results to lbs / ft 2 (1 kPa = 20.9 psf)— (1.13 kPa x 20.9 psf) / 1 kPa = 23.6 psf. 4.  Since this example uses annealed insulating glass, multiply 23.6 psf by the factor listed above for annealed insulating glass— 23.6 psf x 1.8 = 42.5 psf (2.03 kPa).

Shortest Side (inches)

2.  Use the 2.5 mm chart—intersect the short glass side value (36") with the long glass side value (48"). Draw a diagonal line from 0.0 through that intersection point. Use the diagonal line to interpolate between the load contours. In this case, the interpolated non-factored load is 1.13 kPa.

2.5 mm (3/32 in.) Glass Nonfactored Load (kPa) Four Sides Simply Supported Pb = 0.008 1 kPa = 20.9 psf 3-Second Duration

Example interpolate line

Shortest Side (mm)

Longest Side (inches)

1.  Determine the glass area of the unit. If the frame size is 41" x 53", and the frame to glass difference for clad casements is 5", then the glass area of the unit is 36" x 48". (Frame to glass formulas can be found in each product section.)

Example intersection point Longest Side (mm)

The calculated number of 42.5 psf is greater than the design pressure requirement of 28 psf. So this unit passes the ASTM standard for glazing design.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-23

GL ASS DESIGN PRESSURE PERFORMANCE CHARTS ALL PRODUCTS

PRO DUCT PERFO R M A N C E

3.0 mm (1/8 inches)

3.0 mm (1/8 in.) Glass Nonfactored Load (kPa) Four Sides Simply Supported Pb = 0.008 1 kPa = 20.9 psf 3-Second Duration

Shortest Side (mm)

Shortest Side (inches)

Longest Side (inches)

Longest Side (inches)

4.0 mm (5/32 in.) Glass Nonfactored Load (kPa) Four Sides Simply Supported Pb = 0.008 1 kPa = 20.9 psf 3-Second Duration

5.0 mm (3/16 in.) Glass Nonfactored Load (kPa) Four Sides Simply Supported Pb = 0.008 1 kPa = 20.9 psf 3-Second Duration

Shortest Side (mm)

5.0 mm (3/16 inches)

Longest Side (inches)

Shortest Side (inches)

4.0 mm (5/32 inches)

Shortest Side (mm)

Shortest Side (inches)

Longest Side (mm)

Longest Side (mm)

Longest Side (mm)

6.0 mm (1/4 inches)

6.0 mm (1/4 in.) Glass Nonfactored Load (kPa) Four Sides Simply Supported Pb = 0.008 1 kPa = 20.9 psf 3-Second Duration

Shortest Side (mm)

Shortest Side (inches)

Longest Side (inches)

Longest Side (mm)

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-24

INDUSTRY PERFORMANCE STANDARDS AIR / WATER / DESIGN / STRUCTURAL

PR ODUCT PERF ORM A N C E

Voluntary industry standards for window, door and skylight performance are established by three national trade associations: AAMA (American Architectural Manufacturers Association), WDMA (Window and Door Manufacturers Association) and CSA (Canadian Standards Association). These standards are continually being updated and changed. While Pella Corporation strives to use the most current standards available, some manufacturers continue to publish information using previous standards (such as Grade 20, Grade 40, etc.). To help in comparisons with other manufacturers, the chart below includes the latest standards, as well as some of the previous ones. See the following page for a more detailed summary of the current 101/ I.S.2 standard.

C URREN T STAN DA RD S Performance Requirement Standard

Class / Rating / Grade

Maximum Air Infiltration 1

Minimum Water Test Pressure (psf)

Minimum Design Pressure (psf)

AAMA/ W D MA/ C SA 1 0 1 / I .S.2 / A4 4 0 - 0 8

R

0.3 cfm / sq. ft.

2.93

15.1

LC

0.3 cfm / sq. ft.

3.76

25.1

AN D

CW

0.3 cfm / sq. ft.

4.60

30.1

AAMA/ W D MA/ C SA 1 0 1 / I .S.2 / A4 4 0 - 1 1

AW

0.3 cfm / sq. ft.

8.15

40.1

Standard

Class / Rating / Grade

Maximum Air Infiltration 1

Minimum Water Test Pressure (psf)

Minimum Design Pressure (psf)

A AMA /  WD MA /  CSA 1 0 1   /   I .S.2   / A44 0 - 0 5

R

0.3 cfm / sq. ft.

2.93

15.1

LC

0.3 cfm / sq. ft.

3.76

25.1

C

0.3 cfm / sq. ft.

4.60

30.1 40.1

PR EVIOUS STAN DARD S Performance Requirement

101  /  I.S.2 /  N AFS - 0 2 WI ND O WS, S KYL IGHTS AN D G L A SS D O O RS AAMA /  WD MA /  CSA 1 0 1   /   I .S.2   / A44 0 - 0 5 101  /  I.S. 2-97 W I ND O WS A ND GL ASS DO O RS

HC

0.3 cfm / sq. ft.

6.06

AW

0.3 cfm / sq. ft.

8.15

40.1

Residential (R)

0.3 cfm / sq. ft.

2.93

15.1

Light Commercial (LC)

0.3 cfm / sq. ft.

3.76

25.1

Commercial (C)

0.3 cfm / sq. ft.

4.60

30.1

Heavy Commercial (HC)

0.3 cfm / sq. ft.

6.06

40.1

Architectural (AW)

0.3 cfm / sq. ft.

8.15

40.1

Residential (R)

0.3 cfm / sq. ft.

2.86

15.0

Light Commercial (LC)

0.3 cfm / sq. ft.

3.75

25.0

Commercial (C)

0.3 cfm / sq. ft.

4.50

30.0

Heavy Commercial (HC)

0.3 cfm / sq. ft.

6.00

40.0

Architectural (AW)

0.1 or 0.3 cfm / sq. ft.

8.00

40.0

(1) cfm per linear foot of sash crack.

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-25

INDUSTRY PERFORMANCE STANDARDS AIR / WATER / DESIGN / STRUCTURAL

PRO DUCT PERFO R M A N C E

Under AAMA / WDMA / CSA 101 / I.S.2 / A440-08, window and door performance is classified using three primary designators: Product Type, Performance Class and Performance Grade. In order for a product to meet a given performance class and/or grade, a number of requirements must be met. The following tables are intended to provide an overview of those requirements. For example, to achieve a C-R50 (Performance Class R, Performance Grade 50) rating, a casement with a minimum frame size of 24" x 60" must surpass all of the air, water, structural and hardware sub-requirements pertaining to that class and grade. To assist in selecting Pella products that meet project requirements, each product section in Volume 2 contains a product selection guide and design data tables which gives an overview of the class and grade ratings achieved as well as the rating achieved for each standard size.

SD Sliding Doors

Width (inches)

Height (inches)

Minimum Design Pressure (lb/ft 2)

Minimum Structural Pressure (lb/ft 2)

Minimum Water Pressure (lb/ft 2)

Pressure (lb/ft 2)

Allowable (cfm/ft 2)

Start

Run

Max Lock Force (lb)

Max Deflection at Design Pressure

Max Permanent Set After STP

Minimum ASTM Security Grade

Maximum Operating Force (lb)

Minimum Performance Grade

Gateway Minimum Frame Test Size

Performance Class

SHD Side Hinged Doors

H Hung

FW Fixed Window

C Casement

AP Awning

Product Type

Refer to AAMA / WDMA / CSA 101 / I.S.2 / A440-08, for a complete understanding of all performance requirements.

R

15

48

16

15

22.5

2.86

+ 1.57

0.3

15

6

22



0.4% L

10

LC

25

48

29

25

37.5

3.75

+ 1.57

0.3

15

6

22



0.4% L

10

CW

30

48

29

30

45.0

4.50

+ 1.57

0.3

15

6

22

L / 175

0.3% L

10

AW

40

60

36

40

60.0

8.00

+ 6.24

0.1

20

10



L / 175

0.2% L

10

R

15

17

48

15

22.5

2.86

+ 1.57

0.3

15

6

22



0.4% L

10

LC

25

24

48

25

37.5

3.75

+ 1.57

0.3

15

6

22



0.4% L

10

CW

30

24

48

30

45.0

4.50

+ 1.57

0.3

15

6

22

L / 175

0.3% L

10

AW

40

36

60

40

60.0

8.00

+ 6.24

0.1

20

10



L / 175

0.2% L

10

R

15

48

48

15

22.5

2.86

+ 1.57

0.3









0.4% L

10

LC

25

54

54

25

37.5

3.75

+ 1.57

0.3









0.4% L

10

CW

30

60

60

30

45.0

4.50

+ 1.57

0.3







L / 175

0.3% L

10

AW

40

60

96

40

60.0

8.00

+ 6.24

0.1







L / 175

0.2% L

10

R

15

44

60

15

22.5

2.86

+ 1.57

0.3

45

30

22



0.4% L

10

LC

25

44

77

25

37.5

3.75

+ 1.57

0.3

51

34

22



0.4% L

10

CW

30

54

90

30

45.0

4.50

+ 1.57

0.3

51

45

22

L / 175

0.3% L

10

AW

40

60

96

40

60.0

8.00

+ 6.24

0.3

51

45



L / 175

0.2% L

10

R

15

32 (panel)

78

15

22.5

2.86

+ 1.57

0.3





22



0.4% L

10

Air Leakage Resistance

LC

25

34 (panel)

80

25

37.5

3.75

+ 1.57

0.3





22



0.4% L

10

CW

30

36 (panel)

82

30

45.0

4.50

+ 1.57

0.3





22

L / 175

0.3% L

10

R

15

34 (panel)

78

15

22.5

2.86

+ 1.57

0.3

30

20

22



0.4% L

10

LC

25

42 (panel)

80

25

37.5

3.75

+ 1.57

0.3

30

20

22



0.4% L

10

CW

30

46 (panel)

82

30

45.0

4.50

+ 1.57

0.3

30

20

22

L / 175

0.3% L

10

AW

40

58 (panel)

94

40

60.0

8.00

+ 6.24

0.3

40

25



L / 175

0.2% L

10

(—) = Not Applicable STP = Structural Test Pressure

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-26

INDUSTRY PERFORMANCE STANDARDS AIR / WATER / DESIGN / STRUCTURAL

PR ODUCT PERF ORM A N C E

A higher than minimum performance grade may be specified using the Optional Performance Grade chart below.

OPTIONAL PE RFORMAN CE G RA D E S RE QU I RE ME NTS Optional Performance Grade

Product Performance Class

Design Pressure (psf)

Structural Test Pressure (psf)

Water Resistance Test Pressure R, LC, C, HC

AW

(psf)

(psf)

20

R

20

30.0

3.00



25

R

25

37.5

3.75



30

R, LC

30

45.0

4.50



35

R, LC, CW

35

52.5

5.25



40

R, LC, CW

40

60.0

6.00



45

R, LC, CW, AW

45

67.5

6.75

9.00

50

R, LC, CW, AW

50

75.0

7.50

10.00

55

R, LC, CW, AW

55

82.5

8.25

11.00

60

R, LC, CW, AW

60

90.0

9.00

12.00

65

R, LC, CW, AW

65

97.5

9.75

12.00

70

R, LC, CW, AW

70

105.0

10.50

12.00

75

R, LC, CW, AW

75

112.5

11.25

12.00

80

LC, CW, AW

80

120.0

12.00

12.00

85

LC, CW, AW

85

127.5

12.00

12.00

90

CW, AW

90

135.0

12.00

12.00

95

CW, AW

95

142.5

12.00

12.00

100

CW, AW

100

150.0

12.00

12.00

105

AW

105

157.5

12.00

12.00

Product Type I.S. 2-97 AP = Awning Windows C = Casement Windows F = Fixed Windows H = Hung Windows (single, double) HGD = Hinged Glass Doors SGD = Sliding Glass Doors

Product Type 101/ I.S.2 / A440-05 and 08

Performance Class

AP = Awning Windows C = Casement Windows FW = Fixed Windows H = Hung Windows (single, double) SHD = Side-Hinged Doors SD = Sliding Doors

R LC CW AW

Sample Product Designation C-R 5 0 50 = Performance Grade (Design Pressure, psf) R = Performance Class C = Product Type

(—) = Not Applicable

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-27

INDUSTRY CERTIFICATION

PRO DUCT PERFO R M A N C E

HAL L MA RK CE RTIFICAT IO N The WDMA Hallmark Certification Program provides specifiers a method of identifying windows, doors and skylights that are manufactured in accordance with WDMA standards. The WDMA Hallmark is considered a mark of excellence among architects, contractors and other specifiers and is accepted industry-wide. WDMA Standards are referenced by HUD / FHA in their Minimum Property Standards and by many other government agencies in their construction specifications. Hallmark Certification verifies conformance with AAMA/WDMA/CSA 101/I.S.2/A440-08 and AAMA/WDMA/CSA 101/I.S.2/A440-11, and is determined by in-plant inspection of the manufacturing facilities and by sampling and testing of product. Many Pella products are Hallmark Certified and are clearly labeled with performance class and grade information. Refer to pages C-20 through C-22 for more information about performance class and grade. General performance class and grade information is found in Volume 2 under each product section titled Product Selection Guide—Size and Performance Data. Individual unit class and grade ratings are found on the Design Data pages in each section. For additional information about the Window and Door Manufacturers Association, contact: WI NDOW A N D D O O R MA N U FACT U R E R S A SSO CIATI O N 401 North Michigan Avenue, Suite 2200 Chicago, IL 60611 Telephone: 312-321-6802 Fax: 312-673-6922 Web site: www.wdma.com

NF RC RATIN G The National Fenestration Rating Council (NFRC) develops and administers energy-related rating and certification programs and their goal is to serve the public by providing fair, accurate, and credible information on fenestration performance. Pella products labeled with the NFRC Energy Performance label are rated in accordance with NFRC standards. This allows for direct comparisons with other NFRC labeled products. NFRC ratings are based on a combination of computer simulations and physical testing of product samples. For details go to www.NFRC.org.

NF RC 6305 Ivy Lane, Suite 140 Greenbelt, MD 20770 Telephone: 301-589-1776 Fax: 301-588-3884 Web site: www.nfrc.org

MI AMI -DA D E COUN TY, FLO R IDA PR O DU CT A PPR OVA L Most Pella HurricaneShield® impact-resistant single-laminated products have been tested in accordance with stringent Miami‑Dade County, Florida test protocols. Most Pella HurricaneShield impact‑resistant products have passed the Large Missile D impact test, withstanding the force of a 9 lb. 2 x 4 piece of lumber hurled at 34 mph (50 ft / sec.). Insulating glass units and double-hung units are not approved in Miami-Dade County. For information regarding HurricaneShield impact‑resistant products, refer to applicable sections in Volume 2. For more information about Miami-Dade County, Florida, product approval contact: BUI L DIN G COD E COM PL IA N CE O FFICE 140 W. Flagler Street, Suite 1603 Miami, Florida 33130-1563 Telephone: 305-375-2901 Fax: 305-375-2908 Web site: www.buildingcodeonline.com

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-28

PELL A WINDOW AND DOOR COMPLIANCE INFORMATION

PR ODUCT PERF ORM A N C E

Pella windows and doors meet or exceed the following industry and federal performance standards: W DMA — WIN D OW AN D D O O R MA NU FACTU RE RS A SS O C IAT IO N ƒƒ 101/I.S.2/A440-08 ƒƒ 101/I.S.2/A440-11 ƒƒ I.S. 4 Water Repellent Preservative A AMA — A MERICAN ARCHI TE CTU RA L MA NU FACTU RE R S AS S O C I AT I O N ƒƒ 101/I.S.2/A440-08 ƒƒ 101/I.S.2/A440-11 F H A — FEDE RAL HOUSIN G A D MI NI STRATI O N F MH A — FARMERS HOME A D MI NI STRATI O N ƒƒ FmHA endorses WDMA industry standards for windows and doors. Pella products meeting WDMA requirements will meet the requirements of FmHA. C S A — CA NAD IAN STAN DA RD S A SSO CI ATI O N ƒƒ 101/I.S.2/A440-08 ƒƒ 101/I.S.2/A440-11 M D C — MIAMI-DAD E COU NTY, FLO RI DA ƒƒ Protocol TAS 201 – Impact Test Procedures ƒƒ Protocol TAS 202 – Criteria for Testing Impact and Non-Impact Resistant Building Envelope Components Using Uniform Static Air Pressure ƒƒ Protocol TAS 203 – Criteria for Testing Products Subject to Cyclic Wind Pressure Loading

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-29

PRO DUCT PERFO R M A N C E

INDUSTRY TESTING METHODS All Produc ts

AST M — AME RICA N S OC IE TY FO R T E ST IN G A ST M—AM E R I CA N S O C I E TY F O R TE STI N G A N D M ATE R I A LS Clad/Wood

Fiberglass

Vinyl

ASTM B 117

Method of Salt Spray (Fog) Testing







ASTM C 236

Test Method for Steady-State Thermal Performance of Building Assemblies by Means of a Guarded Hot Box







ASTM C 961

Standard Test Method for Lap Shear Strength of Hot-Applied Sealants





ASTM C 1036

Standard Specification for Flat Glass







ASTM C 1048

Specification for Heat-Treated Flat Glass—Kind HS, Kind FT Coated and Uncoated Glass







ASTM C 1199

Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods







ASTM D 76

Standard Specification for Tensile Testing Machines for Textile





ASTM D 570

Standard Test Method for Water Absorption of Plastics





ASTM D 578

Standard Specification for Glass Fiber Strands





ASTM D 635

Standard Test Method for Rate of Burning and / or Extent and Time of Burning of Plastics in a Horizontal Position





ASTM D 638

Standard Test Method for Tensile Properties of Plastics





ASTM D 648

Test Method for Deflection Temperature of Plastics Under Flexural Load





ASTM D 737

Standard Test Method for Air Permeability of Textile Fabrics





ASTM D 790

Standard Test Methods for Flexural Properties of Un-reinforced and Reinforced Plastics and Electrical Insulating Materials





ASTM D 1777

Standard Test Method for Thickness of Textile Materials





ASTM D 1929

Standard Test Method for Determining Ignition Temperature of Plastics





ASTM D 2261

Standard Test Method for Tearing Strength of Fabrics by the Tongue (Single Rip) Procedure (Constant Rate of Extension Tensile Testing Machine)





ASTM D 2471

Standard Test Method for Gel Time and Peak Exothermic Temperature of Reacting Thermosetting Resins





ASTM D 2565

Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications





ASTM D 2653

Standard Test Method for Tensile Properties of Elastomeric Yarns (CRE Type Tensile Testing Machines)





ASTM D 2990

Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics





ASTM D 3822

Standard Test Method for Tensile Properties of Single Textile Fibers





ASTM D 3917

Standard Specification for Dimensional Tolerance of Thermosetting Glass-Reinforced Plastic Pultruded Shapes





ASTM D 5028

Standard Test Method for Curing Properties of Pultrusion Resins by Thermal Analysis





ASTM D 5420

Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact)





ASTM D 5572

Specification for Adhesives Used for Finger-Joints in Non-structural Lumber Products



ASTM D 5751

Standard Specification for Adhesives Used for Laminate Joints in Non-structural Lumber Products



ASTM E 90

Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions







ASTM E 283

Standard Test Method for Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen









Continued on next page

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-30

PR ODUCT PERF ORM A N C E

INDUSTRY TESTING METHODS All Produc ts

ASTM— AME RICA N S OC IE TY FO R T E ST IN G A ST M—AM E R I CA N S O C I E TY F O R TE STI N G A N D M ATE R I A LS Clad/Wood

Fiberglass

Vinyl

ASTM E 330

Standard Test Method for Structural Performance of Exterior Windows, Curtain Walls, and Doors by Uniform Static Air Pressure Differences







ASTM E 331

Standard Test Method for Water Penetration of Exterior Windows, Curtain Walls, and Doors by Uniform Static Air Pressure Differences







ASTM E 405

Standard Test Methods for Wear Testing Rotary Operators for Windows



ASTM E 547

Standard Test Method for Water Penetration of Exterior Windows, Curtain Walls, and Doors by Cyclic Static Air Pressure Differential







ASTM E 662

Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials





ASTM E 773

Standard Test Methods for Seal Durability of Sealed Insulating Glass Units





ASTM E 774

Standard Specification for Sealed Insulating Glass Units





ASTM E 783

Method for Field Measurement of Air Leakage Through Installed Exterior Windows and Doors



ASTM E 1105

Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Curtain Walls, and Doors by uniform or Cyclic Static Air Pressure Differences







ASTM E 1300

Standard Practice for Determining Minimum Thickness of Annealed Glass Required to Resist a Specified Load







ASTM E 1423

Standard Practice for Determining the Steady State Thermal Transmittance of Fenestration Systems







ASTM E 1425

Standard Practice for Determining the Acoustical Performance of Exterior Windows and Doors







ASTM E 1886

Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors and Storm Shutters Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials



ASTM E 1996

Standard Specifications for Performance of Exterior Windows, Glazed Curtain Walls, Doors and Storm Shutters Impacted by Wind Borne Debris in Hurricanes



ASTM E 2188

Standard Test Method for Insulating Glass Performance



ASTM E 2189

Standard Test Method for Testing Resistance to Fogging in Insulating Glass Units



ASTM E 2190

Standard Specification for Insulating Glass Unit Performance and Evaluation



ASTM F 476

Test Methods for Security of Swinging Door Assemblies



ASTM F 588

Standard Test Methods for Resistance of Window Assemblies to Forced-Entry Excluding Glazing







ASTM F 842

Standard Test Methods for Measurement of Forced-Entry Resistance of Horizontal Sliding Door Assemblies







ASTM G 53

Recommended Practice for Operating Light and Water Exposure Apparatus (Fluorescent UV-condensation type) for Exposure of Non-Metallic Materials







ASTM G 85

Practice for Modified Salt Spray (Fog) Testing







Continued on next page

Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com

PP-31

PRO DUCT PERFO R M A N C E

INDUSTRY TESTING METHODS All Produc ts

N FRC — NATIO N A L FE NE ST R AT IO N R AT IN G CO U N CIL, I N C . Clad/Wood

Fiberglass

Vinyl

NFRC 100

Procedure for Determining Fenestration Product U-Factors.







NFRC 200  

Procedures for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence (SHGC, VLT)







NFRC 500

Procedures for Determining a Condensation Rating (CR)





AAMA— AME RICA N A RC H IT E CT U R A L MA N U FACT U R ER S A S S O C I ATI O N AAMA 613

Voluntary Performance Requirements and Test Procedures for Organic Coatings on Plastic Profiles



AAMA 623

Voluntary Specification, Performance Requirements and Test Procedures for Organic Coatings on Fiber Reinforced Thermoset Profiles



AAMA 906

Voluntary Specification for Sliding Glass Door Roller Assemblies



AAMA 920

Specification for Operating Cycle Performance of Side-Hinged Exterior Door Systems



AAMA 1304

Voluntary Specification for Forced Entry Resistance of Side-Hinged Door Systems



AAMA 2603

Pigmented Organic Coatings on Aluminum Extrusions and Panels



AAMA 2604

High Performance Organic Coatings on Aluminum Extrusions and Panels



AAMA 2605

Superior Performing Organic Coatings on Aluminum Extrusions and Panels



Pella 2017 Architectural Design Manual | Division 08 – Openings | Windows and Doors | www.PellaADM.com







PP-32