Lajes de Concreto armado - Arquitetura, Urbanismo e outras

Toda carga é de volume ... 1 m2, pelo peso específico do concreto armado (γ = 25 kN/m3), ... UFPa – ESTRUTURAS DE CONCRETO II...

375 downloads 704 Views 1MB Size
UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

1. INTRODUÇÃO 1. DEFINIÇÃO: Elementos planos (placas), geralmente em posição horizontal, que apresentam uma dimensão, a espessura, muito menor em relação às demais. As lajes recebem os carregamentos atuantes e os transferem aos apoios dispostos no contorno, geralmente vigas, e destes para os pilares até as fundações. Nas estruturas usuais, as lajes respondem por aproximadamente 50 % do consumo de concreto. 1.2. Tipos de lajes a. Lajes maciças: De seção homogênea, executadas sobre formas, que as moldam, e escoramentos, que as sustentam até que adquiram resistência própria. Recomendadas para vãos até 6 metros de comprimento.

b. Lajes nervuradas: Apresentam nervuras, onde ficam concentradas as armações, entre as quais podem ser colocados materiais inertes (isopor, tijolo, etc.) com função de enchimento, o que simplifica a forma (plana) e deixa a superfície inferior lisa para receber o acabamento. Esse sistema é empregado em grandes vãos, onde é necessário trabalhar com espessuras elevadas a fim de atender as flechas e solicitações. A necessidade de espessuras elevadas inviabiliza o emprego de lajes maciças em razão do consumo de concreto e do peso próprio elevado, o que não acontece nas nervuradas, pois parte do concreto é retirado ou substituído por um material mais leve, colocado entre as nervuras, ficando a armação concentrada em faixas (nervuras) para atender às solicitações.

1

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

c. Lajes lisas (cogumelo): São lajes apoiadas diretamente pelos pilares (sem vigas). Esse tipo de laje apresenta diversas vantagens: facilidade de execução (forma e armação), redução de pé direito, facilita a passagem de tubulações (elétrica, hidráulica, ar condicionado, etc.), flexibiliza o arranjo de alvenarias e/ou divisórias (forro liso), etc. Apesar das inúmeras vantagens, ausência de vigas torna o sistema mais flexível, comprometendo estabilidade horizontal. A possibilidade de ruptura por punção e colapso progressivo deve ser cuidadosamente analisada.

d. Lajes pré-moldadas (treliçadas): Trata-se de lajes nervurada com nervuras parcialmente pré-moldadas. A armação fica concentrada nas nervuras. Tem a vantagem da pré-fabricação, reduzindo o uso de formas e escoramentos, com conseqüente redução de custos e aumento de produtividade.

2

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

2. CLASSIFICAÇÃO DAS LAJES MACIÇAS As lajes podem ser classificadas quanto aos seguintes aspectos: •

Quanto ao tipo de apoio: As lajes podem apresentar os seguintes tipos de apoio (vínculo):

Tipo de apoio

simplesmente apoiado

Livre (sem apoio)

engastado

representação

A borda da laje simplesmente apoiada permite a rotação, enquanto o engastado é impedido de girar. O engastamento depende da rigidez do apoio, ou seja, da rigidez do elemento onde a laje pretende se engastar. Na realidade, é muito difícil garantir o engastamento perfeito, sendo mais freqüente o engastamento parcial. Deve-se destacar que a existência de armação de ligação de uma laje com o apoio, normalmente, a laje vizinha, NÃO garante o engastamento, é preciso que a rotação seja impedida, daí a importância da rigidez do apoio. A figura abaixo exemplifica a representação da vinculação das lajes. bordas simplesmente apoiadas borda engastada Laje

borda livre



Quanto à armação

De acordo com a atuação dos momentos fletores, em uma ou duas direções, as lajes podem ser classificadas em armadas em uma ou duas direções.

a. Lajes armadas em uma direção: são aquelas em que os momentos fletores solicitam predominante apenas uma direção. É o caso das lajes em balanço (sacadas), daquelas com as dois lados opostos apoiados, sendo os outros dois livres (rampas, 3

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

escadas), e das lajes com lados apoiados (simples ou engaste), onde a medida do maior lado (L) supera o dobro do lado menor (l), como indicado na figura a seguir. L >2 l

L

Mfy

l

Mfx O momento na direção do menor vão é muito superior ao da outra direção quando a relação entre os vãos supera 2, sendo, dessa forma, considerada como armada em apenas uma direção. Na direção secundária, paralela a “L”, é colocada uma armação de distribuição.

a. Lajes armadas em duas direções: são aquelas em que os momentos fletores solicitam as duas direções. Essa situação ocorre nas lajes retangulares apoiadas nos quatro lados, em que a relação entre o maior vão (L) e o menor (l) é inferior ou igual a dois.

LL

L ≤2 l

São mais econômicas que as lajes armadas em uma direção, pois o carregamento da laje solicita as

Mfy

l

duas

direções,

reduzindo

a

magnitude dos momentos fletores e das flechas.

Mfx Para a determinação dos vãos para a laje, a Norma Brasileira (NBR 6118) prescreve: Vão da laje

h

l = lo + a1 + a2

onde:

t1

lo

t2

a1 = menor vão entre (t1/2) e (0,3h) a2 = menor vão entre (t2/2) e (0,3h) 4

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

3.0 AÇÕES A CONSIDERAR As ações (carregamentos) podem classificadas segundo o tempo de atuação nas estruturas, dando origem às ações permanentes e ações variáveis. As ações permanentes atuam durante toda a vida, pode-se citar: peso próprio, revestimentos, paredes, etc. As ações variáveis são constituídas pelas cargas de uso da construção, ou seja, atuam durante certos períodos na estrutura, pode-se citar: móveis, pessoas, veículos, peso da água (reservatórios), etc. A figura mostrada a seguir ilustra as ações usuais nas lajes de construções residenciais. pessoas, móveis, veículos, etc revestimento do piso paredes

revestimento teto

No processo de cálculo das lajes, as ações devem ser consideradas por m2, algumas são de fato, caso do peso próprio, outras são admitidas assim por simplificação, como o peso de paredes, o qual deve ser distribuído na área da laje. O cálculo computacional por elementos finitos já permite a consideração mais precisa da atuação de ações discretas (paredes) nas lajes. 3.1 COMPOSIÇÃO DO CARREGAMENTO DAS LAJES POR m2 3.1.1 AÇÕES PERMANENTES São constituídas pelo peso próprio do elemento estrutural e pelo peso de todos os elementos construtivos e instalações permanentes. Toda carga é de volume (kN/m3), transformada em peso por m2 (kN/m2) para efeito de cálculo.

a. Peso próprio Para determinação do peso próprio (pp) por m2, basta multiplicar o volume da laje em 1 m2, pelo peso específico do concreto armado (γ = 25 kN/m3), assim: pp = 1 m x 1 m x e x 25 = 25. e (kN/m2), com e em metros.

5

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Para cada “cm” na espessura da laje (0,01 m), o peso próprio aumenta de 0,25 kN (25 kgf). Assim, uma laje com 8 cm de espessura apresenta peso próprio de 2 kN (200 kgf) por m2.

Como a espessura ainda não é conhecida nesta fase do cálculo, e o peso próprio é um carregamento a ser considerado, deve-se fazer um pré-dimensionamento das espessuras. A norma brasileira (NBR 6118) não apresenta critérios de prédimensionamento, no entanto, para lajes retangulares com bordas apoiadas ou engastadas, a altura útil (d) pode ser estimada por meio da expressão:

( 2,5 − 0,1n) ⋅ l * d= 100 sendo n o número de bordas engastadas e l* o menor valor entre l (menor vão) e 0,7L (maior vão). Ao valor da altura útil deve-se acrescentar o valor correspondente à metade do diâmetro da armação (estimado) e o valor do cobrimento das armaduras, como ilustrado na figura abaixo. Assim,

d

e = d +Ø/2 + c Ø/2

c

Para efeito de pré-dimensionamento pode-se admitir um diâmetro de 0,5 cm (Ø = 5.0 mm). O valor do cobrimento (c) é estabelecido na NBR 6118 de acordo com a classe de agressividade ambiental (CAA) em que a estrutura será construída, conforme as Tabelas 6.1 e 7.2 da norma, mostradas a seguir.

6

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Permite ainda a norma que os cobrimentos acima sejam reduzidos de 5 mm, quando houver um controle rigoroso de execução, o que deve ser explicitado nos desenhos do projeto. De acordo a NBR 6118, lajes executadas em Belém, ambiente urbano, classe II, devem ter cobrimento mínimo na face inferior e superior de 25 mm e 15 mm, respectivamente, enquanto aquelas executadas em Salinópolis, ambiente marinho, classe III, devem ser executadas com cobrimento de 35 mm e 15 mm.

A NBR 6118 ainda prescreve que devem ser respeitados os seguintes limites mínimos para a espessura de lajes maciças: •

5 cm para lajes de cobertura não em balanço;



7 cm para lajes de piso ou de cobertura em balanço;



10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN;



12 cm para lajes que suportem veículos de peso total maior que 30 kN;



16 cm para lajes lisas e 14 cm para lajes-cogumelo.

Como exemplo de pré-dimensionamento, seja a laje de piso indicada na figura a seguir, a ser executada em ambiente classe, armada com ferros de diâmetro 6 mm.

d=

(2,5 − 0,1n) ⋅ l * , sendo n = 1 e l* o menor valor 100

l = 350

entre l = 350 e 0,7 L = 280 cm, ou seja, l* = 280 cm, logo,

d=

( 2,5 − 0,1 ⋅1) ⋅ 280 = 6,72 cm 100

L = 400

7

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Assim, a espessura da laje: e = d +Ø/2 + c e = 6,72 + 0,6/2 + 2 = 9,02 cm

e = 9 cm

O peso próprio da laje com 9 cm de espessura pp = 25 . 0,09 = 2,25 kN/m2 ou 225 kgf/ m2

b. Revestimento da superfície inferior (teto) Para determinação da carga correspondente ao revestimento do forro, deve-se multiplicar o volume do material aplicado em 1 m2 (1 x 1 x hrt) pelo peso específico do material ( γrt ), sendo hrt a espessura da camada de revestimento.

1m

1m hrt

= (1 x 1 x hrt) x γrf

hrf

De acordo com o tipo de revestimento, pode-se encontrar as seguintes situações: •

argamassa de cimento+areia+cal (γ = 19 kN/m3) com espessura média de 2 cm: 0,02 x 19 = .. ... .0,38 kN/m2



Gesso espatulado diretamente sobre o concreto: .................... Não considerar



Placas de gesso (forro falso) penduradas na laje: ...............................0,1 kN/m2

c. Revestimento de piso É normalmente constituído de camada niveladora e acabamento final.

c.1 Camada niveladora ou camada de regularização em argamassa de cimento+areia (γ = 21 kN/m3) com espessura média de 4 cm: 0,04 x 21 = ........................... 0,84 kN/m2 e

c.2 Acabamento:

(m)

γ

(kN/m3)



Em lajota (e = 0,5 cm)



Em taco/tábua corrida (e = 2 cm) ....................................0,02 x 10 = 0,2 kN/m2



Em mármore/granito (e = 2 cm) ..................................... 0,02 x 28 = 0,56 kN/m2



Em carpete/paviflex ou similar

................................................. 0,005 x 18 = 0,09 kN/m2

............................................... Não considerar

8

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Como resultado final do revestimento de piso deve-se considerar o peso da camada niveladora somado com o do acabamento. De modo a simplificar a consideração da carga de revestimento nos projetos de prédios residenciais dois valores distintos em função do acabamento especificado: 1 kN/ m2 para acabamento simples (lajota, tábua corrida, taco de madeira, carpete) e 1,5 kN/m2 para acabamentos mais sofisticados que incluam pedras de mármore ou granito)

d. Cargas de parede sobre lajes O peso das paredes depende da espessura (largura) definida no projeto arquitetônico. O peso das paredes de tijolos cerâmicos é obtido da soma do peso dos elementos cerâmicos (tijolo) com o da argamassa de rejunte e de acabamento (reboco). Assim, o peso de 1 m2 ( 1m de comprimento por 1 m de altura) de paredes acabadas, executadas com tijolos cerâmicos furados, é dado por: peso por m2

espessura da parede 13 cm

.................................... ~

2 kN/m2

15 cm

.................................... ~

2,3 kN/m2

20 cm

.................................... ~

2,9 kN/m2

Desta forma, para se obter o peso total das paredes sobre determinada laje, deve-se multiplicar o comprimento total das paredes pela altura, para se determinar a área total, e o resultado pelo peso por m2, o qual varia com a espessura.

d.1 Peso das paredes nas lajes armadas em duas direções Nessas lajes o peso das paredes deve ser uniformemente distribuído na área da laje, resultando em uma carga por m2. É uma simplificação em razão dos processos manuais de cálculo, válido para lajes com dimensões reduzidas, como as de prédios residenciais. Para a laje indicada na figura, a carga proveniente das paredes com 2,8

palv =

peso total paredes área da laje

palv =

(2,5 + 1,5) ⋅ 2,8 ⋅ 2,3 ≅ 1,43 kN / m 2 4,5 ⋅ 4

1,5 m 2,5 m

4,5 4, 5m

metros de altura resulta em:

0,15 m

4m

9

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

d.1 Peso das paredes nas lajes armadas em apenas uma direção Há duas situações quanto à distribuição do peso das paredes, visto que essas lajes são admitidas como faixas sucessivas de 1 m de largura, como vigas, segundo o menor vão. •

Parede paralela à menor direção: a peso da parede é distribuído apenas em um trecho correspondente a 2/3 do menor vão, como indicado na figura, ficando a laje com carregamentos diferentes. Nos trechos “a” e “c”: pp+rev+sc l

a

No trecho “b”: pp+rev+sc+palv

L

2 b = ⋅l 3

l

palv =

c

pp = peso próprio rev = revestimento sc = carga acidental

pp = peso próprio rev = revestimento sc = carga acidental palv = peso parede

Peso total parede 2 , sendo b = ⋅ l 3 b ⋅l

l •

Parede paralela à maior dimensão: A parede é considerada como uma carga concentrada na laje. No trecho “a””: pp+rev+sc l

a

pp = peso próprio rev = revestimento sc = carga acidental

No trecho “b”:

L

Ppar pp+rev+sc

d1

d2

b

d2

d1 l

l

pp = peso próprio rev = revestimento sc = carga acidental Ppar = peso parede

Ppar = 1 ml x altura parede x peso 1 m2 parede

Nos dois casos acima, a carga da parede solicita trechos diferentes da laje (a, b e c), resultando em momentos e, provavelmente, armaduras diferentes na mesma laje. De

10

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

modo a simplificar o detalhamento e evitar possíveis erros de execução, costuma-se adotar a maior armação em toda extensão da laje.

Nos balanços (sacadas), o peso do guarda-corpo deve ser considerada como uma carga concentrada, aplicada na extremidade do balanço.

3.1.2 AÇÕES VARIÁVEIS São aquelas que atuam na estrutura em função de seu uso, tais como: pessoas, móveis, veículos, etc. O termo variável refere-se ao tempo de permanência da carga na estrutura. Os valores mínimos das cargas variáveis dependem da finalidade da edificação e estão especificados na NBR 6120.

São freqüentes os valores:



1,5 kN/m2 : edifícios residenciais (salas, dormitórios, cozinha e banheiros);



2 kN/m2 : escritórios



0,5 kN/m2 : forro / terraço sem acesso ao público;



3 kN/m2 : garagem / estacionamento para veículos de passageiros com carga máxima de 25 kN por veículo;

A NBR 6120 ainda exige que deve-se considerar a atuação de uma carga horizontal de 0,8 kN e outra vertical de 2 kN, por metro linear, ao longo de parapeitos e balcões, como ilustrado na figura a segui.

2 kN 0,8 kN parapeito (guarda-corpo)

Cabe citar a situação de estruturas com cargas variáveis (sobrecargas) elevadas, caso de depósitos, supermercados, etc., onde deve-se analisar os resultados da aplicação da carga variável em lajes distintas de modo a se obter os maiores esforços, visto que a aplicação localizada de valores elevados de carga pode alterar a condição de engastamento da laje, ou seja, pode resultar na rotação (apoio simples) na borda da laje, admitida inicialmente engastada.

carga variável elevada

11

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

ESFORÇOS SOLICITANTES

4.

O dimensionamento das lajes é realizado a partir dos momentos fletores, das forças cortantes e dos momentos de torção. As lajes são consideradas como faixas sucessivas de 1 m de largura, dispostas em uma ou duas direções, onde atuam os esforços solicitantes. O valor determinado para a faixa de laje é considerado o mesmo em toda sua extensão. Os esforços dependem do carregamento, das vinculações e dos vãos da laje.

4.1 Momentos fletores 4.1.1 Nas lajes armadas em uma direção ( L / l >2 ) a. Apoiadas nos quatro lados ( L / l >2 ) O cálculo é análogo ao de uma viga de base igual a 1 m e altura correspondente à espessura da laje. Os seguintes casos podem ser encontrados:

p

p

L

p

100

l

l

l



pl 2 − 8

p ⋅l2 8

pl 2 12

pl 2 24

b. Em balanço

A laje fica engastada em apenas um lado, considera-se como uma viga em balanço

2 kN

0,8 kN

p ⋅l2 Mf ≅−( + P ⋅ l + 0,8 ⋅ h) 2

h

P(peso gc +2 kN) p(g+q)

V ≅ − ( p ⋅ l + P)

0,8.h

l

12

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

4.1.2 Nas lajes armadas em duas direções ( L / l ≤ 2 ) Para determinação dos esforços nas lajes armadas nas duas direções há dois processos de cálculo: o elástico e o plástico. O cálculo no regime plástico permite a determinação do momento fletor último a partir da configuração de ruína da laje, definida por “linhas de ruptura, charneiras ou rótulas plásticas”, de acordo com a provável distribuição das fissuras no momento da ruptura, como ilustrada na figura a seguir.

Linhas de ruptura (charneiras plásticas)

As “linhas de ruptura” dividem a laje em triângulos e trapézios, ou seja, painéis rígidos que giram em torno das rótulas plásticas. A carga última pode ser obtida por meio do princípio dos trabalhos virtuais ou equações de equilíbrio. A verificação aos ELS (estado limite de serviço) deve ser realizada por processo elástico de cálculo. O cálculo em regime elástico (cargas de serviço) pode ser realizado a partir da equação diferencial fundamental da teoria das placas, denominada equação de Lagrange, admitindo material homogêneo, isótropo, elástico e linear.

A equação

relaciona o deslocamento elástico, z, da placa com carga uniforme, p, normal à superfície, como segue: p

x

h y

∂4z ∂4z p 2∂ 4 z + + = ∂x 4 ∂x 2 ∂y 2 ∂y 4 D

z

sendo:

D=

Eh 3 = é a rigidez à flexão da placa; 12 (1 − ν 2 )

E é módulo de elasticidade do material; h é a espessura da placa;

ν é o coeficiente de Poisson do material. 13

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Os momentos fletores nas direções x e y da placa podem ser determinados por:

⎛ ∂2z ∂2 z ⎞ M x = − D ⋅ ⎜⎜ 2 +ν 2 ⎟⎟ ∂y ⎠ ⎝ ∂x

e

⎛ ∂2 z ∂2 z ⎞ M y = − D ⋅ ⎜⎜ 2 + ν 2 ⎟⎟ ∂x ⎠ ⎝ ∂y

A solução das equações diferenciais é normalmente obtida por meio de processos numéricos (diferenças finitas, elementos finitos, etc.) ou integração por séries trigonométricas, dos quais resultaram tabelas de uso prático, como as de Czerny, Bares, Marcus, etc. O chamado Processo de Marcus é um dos mais empregados na determinação dos momentos fletores em lajes retangulares. A obtenção dos momentos fletores é realizada com base na teoria das grelhas ou quinhões de carga, corrigidos por coeficientes obtidos da solução da equação de Lagrange. A teoria das grelhas consiste em dividir a laje em faixas de largura unitária, ortogonais entre si, paralelas aos bordos, onde a carga total da laje, p, é dividida em duas parcelas, px e py, chamadas de quinhões de carga, função da relação entre os vãos e da vinculação da laje, sendo

px + py = p. As faixas, admitidas como vigas independentes submetidas aos respectivos quinhões de carga, produzem esforços mais elevados por não considerar a ligação com as outras faixas, daí a necessidade de correção por meio de coeficientes resultantes da equação de Lagrange. O cálculo dos momentos fletores em lajes retangulares, apoiadas em todo seu contorno, pelo Processo de Marcus pode ser realizado por meio de tabelas conforme o roteiro a seguir:

1. Observa-se, pelo esquema estático, o tipo de laje a ser calculada. Há seis situações possíveis:

1

4

3

2

5

6

2. Calcula-se a relação λ = l y l x , onde l x é a direção que contém o maior número

lx

lx

lx

lx

lx

de engastes. No caso de igualdade no número de engastes, l x será o menor vão:

14

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

3. Com a definição do tipo de laje e do valor de λ , obtém-se na tabela de Marcus os coeficientes m e n para cálculo dos momentos positivos e negativos, respectivamente;

4. Os momentos são então obtidos pelas expressões:

ly Mx

Momentos positivos

lx

Xy My

Momentos negativos

pl x2 Mx = mx

Xx = −

pl x2 nx

pl x2 my

Xy =−

pl x2 ny

Xx

My =

Observar que o numerador das expressões é sempre o mesmo, pl x2 , nas duas direções.

4.1.3 Compatibilização dos momentos O cálculo dos momentos fletores indicado nos itens anteriores é realizado como lajes isoladas.

No

trabalho

conjunto,

as

lajes

admitidas

contínuas

apresentam,

normalmente, sobre um mesmo apoio, momentos de engastamento diferentes face ao cálculo isolado. Dessa forma, entre lajes contínuas, o momento negativo deve ter valor único, o que requer a compatibilização (uniformização) dos momentos das lajes engastadas. O momento compatibilizado pode ser obtido por:

L1

L2

Xc } XL1 XL2

⎧0,8 ⋅ (do maior entre X L1 e X L 2) ⎪ X c ≥ ⎨ X L1 + X L 2 ⎪⎩ 2 Como conseqüência da compatibilização,

XL1

convém corrigir os momentos positivos,

Xc

aumentando-o ou reduzindo-o, conforme

XL2

∆M L1

∆M L 2 Diagrama compatibilizado

for o caso, de um valor correspondente a metade da diferença entre o momento compatibilizado, Xc, e o momento negativo da laje calculada isoladamente, XL1 ou XL2,

ou seja, ∆ML1=(XL1 – Xc)/2 para L1 e ∆ML2=(Xc – XL2)/2 para L2.

15

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Coeficientes para cálculo dos momentos pelo Processo de Marcus

16

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

5. DIMENSIONAMENTO À FLEXÃO

Calculados os momentos fletores, pode-se realizar o dimensionamento das armaduras de flexão. O dimensionamento é realizado admitindo-se as faixas de laje como vigas de base 1 m e altura h igual à espessura da laje. Em geral, o dimensionamento conduz a seções subarmadas com armadura simples. A armadura dupla deve ser evitada em virtude da altura reduzida o que dificulta a execução. Para o cálculo das armaduras, além da altura e momento fletor, é preciso definir a altura útil (d = h – d’), a resistência característica à compressão do concreto (fck) e o aço a ser empregado (CA 50 ou CA 60). As armaduras podem ser obtidas por:

As =

M Sd (cm 2 / m) k z d f yd

sendo:

M Sd = 1,4 ⋅ M k , momento solicitante de cálculo em kgf.m; d , a altura útil em metros; fyd , valor de cálculo da resistência ao escoamento em kgf / cm2;

k z , coeficiente obtido na Tabela 5.1 a partir do coeficiente k md obtido por:

k md =

M Sd d 2 f cd

onde

f cd é o valor de cálculo da resistência à compressão do concreto em kgf / cm2; d , a altura útil em centímetros e M Sd em kgf.m.

Com o objetivo de melhorar a dutilidade nas regiões de apoio ou ligações com outros elementos estruturais, a NBR 6118 exige que se observe os seguintes limites: kx =

x ≤ 0,5 para concretos com f ck ≤ 35 MPa d

kx =

x ≤ 0,4 para concretos com f ck > 35 MPa d

17

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Tabela 5.1 – coeficientes adimensionais para o dimensionamento à flexão*

*do livro “ESTRUTURAS DE CONCRETO ARMADO – FUNDAMENTOS DE PROJETO, DIMENSIONAMENTO E VERIFICAÇÃO” – João Carlos Teatini de Souza Clímaco

18

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

O ELU é caracterizado quando a distribuição das deformações na seção transversal pertencer a um dos domínios definidos na figura mostrada a seguir.

kx = 0,259

kx = 0,585 CA 60

kx =

kx = 0,628 CA 50

εc x = d εc + εs

Descrição dos domínios de estado limite último:

19

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Após dimensionamento à flexão, a escolha das armaduras (bitola e espaçamento) deve atender as prescrições da NBR 6118/2003 relacionadas a seguir:

a. Armadura mínima: Destinada a melhorar o desempenho e dutilidade à flexão, assim como controlar a fissuração, a armadura mínima em lajes deve ser obtida por

As ,mín = ρ min ⋅ bw ⋅ h

(cm2)

sendo bw = 100 cm , h em cm e ρ mín obtido na Tabela abaixo Tabela 5.2 – Taxa de armadura mínima em lajes f ck (MPa)

Armaduras

ρ mín

20

25

30

35

40

45

50

0,15

0,15

0,173

0,201

0,23

0,259

0,288

0,1

0,1

0,116

0,135

0,154

0,174

0,193

Armaduras negativas Armadura positiva (principal) de lajes armadas em uma direção Armadura positiva de lajes armadas em duas direção

A armadura secundaria (distribuição) de lajes, colocada na direção paralela ao maior vão, deve ser obtida por

As ,dist

⎧ As , prin / 5 ⎪ ≥ ⎨0,9 cm 2 / m ⎪0,5 ⋅ A s , mín ⎩

b. Bitola máxima ( φ máx )

φ máx ≤

h , 8

h é a espessura da laje

c. Espaçamento máximo das barras ( s ) Na região de maiores momentos fletores, a armadura principal deve apresentar espaçamento máximo de 2h ou 20 cm, ou seja,

⎧2 h s≤⎨ . ⎩20 cm

A armadura secundária deve apresentar espaçamento de no máximo 33 cm, o que corresponde a aproximadamente 3 barras por cada metro da laje na direção secundária.

20

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

6. DETALHAMENTO DAS ARMADURAS DE LAJES O detalhamento das armaduras das lajes é realizado em planta, utilizando como base a planta de formas da estrutura do pavimento. Na planta de armadura de lajes devem ser desenhadas apenas as barras representativas da armadura de cada laje nas duas direções, com indicação do número de barras destinadas àquela laje, diâmetro, espaçamento entre barras e comprimento unitário. O desenho deve indicar as armaduras positivas (junto à face inferior) e negativas (junto à face superior), no entanto, quando houver superposição de armaduras que dificulte a interpretação deve-se realizar o detalhamento dessas armaduras em plantas diferentes. Costuma-se representar as barras da armadura positiva com linhas cheias e as da negativa com linhas tracejadas de modo a facilitar a visualização do detalhamento. Por último, na planta de detalhamento das armaduras devem constar: a resistência característica do concreto, fck, o tipo de aço (CA 60 e/ou CA 50), os quadros com discriminação das barras e resumo do aço (quantitativos), e o cobrimento a ser adotado na execução do projeto.

6.1 Armadura inferior (positiva) Deve ficar junto à face inferior da laje com a finalidade de atender os momentos fletores positivos. As armaduras geralmente se estendem de apoio a apoio, penetrando no mínimo 10Ø (10 diâmetros da barra). Na prática a armadura se estende até próximo à face externa da viga de apoio da laje, respeitando-se o cobrimento mínimo normativo. A Figura 6.1 mostra o detalhamento típico de armaduras positivas em lajes. A bitola e espaçamento são obtidos no dimensionamento. A

32 Ø6.3 c14 - 405 23 Ø5.0 c16 - 485

Comprimento

Diâmetro

15

livre

transversal

(interno), da

na

direção

armadura,

pelo

espaçamento, subtraindo-se uma unidade. O comprimento é obtido pela soma do vão livre, na direção

15

Quantidade

vão

460

Espaçamento

quantidade é obtida dividindo-se o

380 vão livre

da armadura, com a largura dos apoios, subtraindo-se o cobrimento

15

normativo nas duas extremidades.

Figura 6.1 – Armadura positiva

21

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

-

Nov/2006

Alguma economia pode ser obtida variando-se alternadamente o comprimento das barras, em decorrência da redução dos momentos fletores na região próxima dos apoios, ou seja, fora da região dos maiores momentos. O comprimento das barras, denominadas de ferros contra-fiados, depende da vinculação da laje. Deve-se atentar para o espaçamento máximo nessa região em que as barras ficam com o dobro do valor na região dos maiores momentos, em face do valor máximo de 33 cm estabelecido na NBR 6118. Assim, o detalhamento com ferros contra-fiados só pode ser realizado quando o espaçamento entre barras, na região dos maiores momentos,

15

for de até 16,5 cm. A Figura 6.2 exemplifica o detalhamento com ferros contra-fiados.

32 Ø6.3 c14 - 345 23 Ø5.0 c16 - 415

Comprimento

Diâmetro

COMPRIMENTO DOS FERROS CONTRA-FIADOS ~ 0,85 . (vão livre + largura apoios) ~ 0,8 . (vão livre + largura apoios) ~ 0,7 . (vão livre + largura apoios)

15

Quantidade

460

Espaçamento

VINCULAÇÃO DA LAJE

15

380 vão livre

15

Figura 6.2 – Detalhamento da armadura positiva com ferros contra-fiados

6.2 Armadura superior (negativa) 6.2.1 Armadura negativa entre lajes totalmente apoiadas (nos quatro lados) Deve ficar junto à face superior da laje com o objetivo de atender os momentos negativos. Quando não se determinar o diagrama exato de momentos negativos, as barras da armadura principal sobre os apoios deverão se estender, para cada lado, de um valor correspondente a 1/4 do maior entre os menores vãos das lajes contíguas, como exemplifica a Figura 6.3. A bitola e espaçamento são determinados pelo dimensionamento. A quantidade é determinada da mesma forma citada anteriormente e o comprimento total corresponde à soma do comprimento reto com os dos ganchos nas extremidades. De modo a garantir o posicionamento das barras, devem ser colocadas barras complementares na direção transversal de modo a proporcionar a sustentação desejada. Convém ainda empregar dispositivos de apoio tais como caranguejos ou blocos de argamassa.

22

UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro

L1

l2 / 4

l2=400

h = 10 .. Ø5.0 c30 – …

7

L2

l2 / 4

h=8

Nov/2006

armadura de amarração h–3

25 Ø8.0 c15 – 212 5 200

l1 > l2 > l3

ou a

-

l2 é o maior entre os menores vãos

a/2

a = 2 .( l2 / 4) = 2 . (400/4) = 200 cm l3=300

l1=500

menor vão de L2 menor vão de L1 Figura 6.3 – Detalhamento de armadura superior (negativa) 6.2.1 Armadura negativa em balanços



Com continuidade

Nas lajes em balanço com continuidade as barras devem ser estender na laje contígua 1,5 vezes o comprimento do balanço. De modo a garantir o L1

L2

h = 10

h=8

.. Ø8.0 c12 – 312

.. Ø5.0 c30 – …

7

1,5 l

300 l

armadura de amarração 5

h–3

posicionamento das barras da

armadura

principal,

devem ser dispostas barras

a = 2 ,5 l = 300 cm complementares na direção cobrimento

transversal como indicado anteriormente.

l=120

Figura 6.5 – Detalhamento da armadura no balanço com continuidade



Sem continuidade

A armadura deve ficar ancorada na viga, é o caso de pequenas marquises de proteção. Deve-se destacar a necessidade de dimensionar a viga à torção.

.. Ø6.3 c15 – … h–3 Viga

armadura de Laje amarração

Figura 6.6 – Detalhamento da armadura no balanço sem continuidade

23