VOLTAGE-CONTROLLED OSCILLATOR (VCO)

Download Voltage-Controlled Oscillator (VCO). V. C f osc f min f max slope = K vco. Desirable characteristics: • Monotonic f osc vs. V. C characteri...

0 downloads 650 Views 7MB Size
Voltage-Controlled Oscillator (VCO) fosc

Desirable characteristics: •  Monotonic fosc vs. VC characteristic with adequate frequency range •  Well-defined Kvco

fmax

slope = Kvco

fmin

φVC φin

VD

KPD

F (s)

+



VC

VC

K^vco s

φout φout









€ €

K^vco = ⋅ φVC s + KPD K^vco F (s) / N

Noise coupling from VC into PLL output is directly proportional to Kvco.

÷N € EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

1

Oscillator Design

Vin ⇒ 0

A(s)

Vout

Vout A(s) ≡ HCL (s) = Vin 1+ f ⋅ A(s) loop gain







f



Barkhausen’s Criterion: If a negative-feedback loop satisfies:

( ) ∠A( jω ) = −180 f ⋅ A jω o ≥ 1



o

!

then the circuit will oscillate at frequency ω0.

€ EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

2

Inverters with Feedback (1) 1 inverter: V1

V2

1 inverter

V2

feedback

1 stable equilibrium point

V1 V2

2 inverters: V1

feedback

V2

3 equilibrium points: 2 stable, 1 unstable (latch)

2 inverters V1 EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

3

Inverters with Feedback (2) 3 inverters forming an oscillator: V1

V2 V2

1 unstable equilibrium point due to phase shift from 3 capacitors V1

A0 Let each inverter have transfer function Hinv ( jω ) = 1+ jω p A30 3 Loop gain: Hloop ( jω ) = [Hinv ( jω )] = 3 1+ j ω p ( ) € % ( −1 ω Applying Barkhausen’s criterion: ∠Hloop ( jω ) = −3 tan ' * = −180! ⇒ ω o = 3⋅ p

& p)



Hloop ( jω o ) =

€ EECS 270C / Spring 2014

A30

[1+ 3]

Prof. M. Green / U.C. Irvine



3

2

> 1 ⇒ A0 > 2 4

Ring Oscillator Operation tp

tp

VA

tp

VB

VA

VC

tp

VB

1 Tosc = 3t p 2 ⇒ Tosc = 6t p

tp

VC

tp

VA 1 Tosc 2 EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

5

Variable Delay Inverters (1)

Inverter with variable load capacitance: Vin

Current-starved inverter:

Vout

VC Vin

Vout

VC

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

6

Variable Delay Inverters (2) Interpolating inverter: ISS + V _C

R Vout+

R Vout-

Vin+

Vin- Vin+

VinRG

Ifast

RG Islow

•  tp is varied by selecting weighted sum of fast and slow inverter. •  Differential inverter operation and differential control voltage •  Voltage swing maintained at ISSR independent of VC. EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

7

Differential Ring Oscillator

+ −

+ −

VA

+ −

VB

VA

VC

+ −

VD

− +

VA

additional inversion (zero-delay)

tp tp

VB VC

1 Tosc = 4t p 2 ⇒ Tosc = 8t p

tp tp

VD

Use of 4 inverters makes quadrature signals available.

VA EECS 270C / Spring 2014



1 Tosc 2

Prof. M. Green / U.C. Irvine

8

Resonance in Oscillation Loop H r ( jω )



Hr (s)

1

€ π + 2

Hr (s)



∠Hr ( jω )



ωr

€ −

At dc: € Since Hr(0) < 1, latch-up does not occur.

ωr

At resonance:

H r ( jω r ) > 1

Prof. M. Green / U.C. Irvine



ω

π 2

∠Hr ( jωr ) = 0 EECS 270C / Spring 2014

ω

⇒ ωo = ωr 9



LC VCO L Vin

Hr (s)

C

Vout

ωr = Vout

Vin

1 LC



€ Hr (s)

2L







C

C

Hr (s)

realizes negative resistance





EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

10

Variable Capacitance varactor = variable reactance Cj

A. Reverse-biased p-n junction +

VR



VR

B. MOSFET accumulation capacitance

Cg

p-channel

– VBG +

n diffusion in n-well accumulation region EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

inversion region

VBG 11

LC VCO Variations IS

2L C

C

C

C

2L

2L C

IS

2L

C

C

C ISS

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

12

Effect of CML Loading 1. 1. ideal capacitor load 1 nH

3.8 Ω

400 fF

400 fF

108 fF

108 fF

2. Cg = 108fF 1 nH

3.8 Ω

400 fF

400 fF

2. CML buffer load EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

13

CML Buffer Input Admittance (1) Yin = jωCgs + jωCgd A0 ⋅

1+ jω / z 1+ jω / p

A0 = 1+ gm R



(

)

where: 1/ p = CL + Cgd R



1/ z =

(note p < z)

CL R A0







Re Yin = A0Cgd ω 2 ⋅

( )

1 p −1 z

(

1+ ω p

)

2

Substantial parallel loss at high frequencies ⇒ weakens VCO’s tendency to oscillate

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

14

CML Buffer Input Admittance (2) Yin magnitude/phase:

Yin real part/imaginary part:

magnitude imaginary

phase real

Contributes 2kΩ additional parallel resistance

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

15

CML Buffer Input Admittance (3)

3. CML tuned buffer load

Cg = 108 fF 1 nH

imaginary

3.8 Ω

400 fF

400 fF

3.8 nH

real

Contributes negative parallel resistance

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

16

CML Buffer Input Admittance (4)

ideal capacitor load Cg = 108 fF 1 nH

400 fF

3.8 Ω

400 fF

3.8 nH

CML buffer load Loading VCO with tuned CML buffer allows negative real part at high frequencies ⇒ more robust oscillation!

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

CML tuned buffer load

17

Differential Control of LC VCO Differential VCO control is preferred to reduce VC noise coupling into PLL output.

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

18

Oscillator Type Comparison

Ring Oscillator

LC Oscillator

– slower

+ faster

– low Q ⇒ more jitter generation

+ high Q ⇒ less jitter generation

+ Control voltage can be applied differentially

– Control voltage applied single-ended

+ Easier to design; behavior more predictable

– Inductors & varactors make design more difficult and behavior less predictable

+ Less chip area

– More chip area (inductor)

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

19

Random Processes (1)

Random variable: A quantity X whose value is not exactly known. Probability distribution function PX(x): The probability that a random variable X is less than or equal to a value x.

PX(x) 1

Example 1: Random variable

X ∈ [−∞,+∞]

0.5

€ EECS 270C / Spring 2014

x Prof. M. Green / U.C. Irvine

20

Random Processes (2) Probability of X within a range is straightforward: PX(x) 1

0.5

(

)

P X ∈ [x 1, x 2 ] = P(x 2 ) − P(x 1)

x1 x2

x

€ If we let x2-x1 become very small …

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

21

Random Processes (3) Probability density function pX(x): Probability that random variable X lies within the range of x and x+dx. p X (x) ⋅ dx = PX (x + dx) − PX (x) ⇒ p X (x) =

dPX (x) dx

€ €

(

PX(x)

) ∫

P X ∈ [ x 1, x 2 ] =



1

x2 x1

p X (x) dx

pX(x)

0.5

dx EECS 270C / Spring 2014

x

x Prof. M. Green / U.C. Irvine

22

Random Processes (4) Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples. +∞

∫ x ⋅p

E[X ] ≡ X =

X

(x)dx

−∞

Mean square value E[X2]: Mean value of the square of a random variable X2 over a large number of samples.



+∞

E[X 2 ] =

∫x

2

⋅ p X (x)dx

−∞

Variance:

[

2

+∞

]

2

E (X − X ) ≡ σ =



∫ (x − X ) p

[

EECS 270C / Spring 2014



X

(x)dx

−∞

2 Standard deviation: σ = E (X − X )



2

]

Prof. M. Green / U.C. Irvine

23

Gaussian Function 1.  Provides a good model for the probability density functions of many random phenomena. 2.  Can be easily characterized mathematically σ , X . 3.  Combinations of Gaussian random variables are themselves Gaussian.

(



)

f (x)

1

σ 2π 0.607

% −(x − X )2 ( * f (x) = exp' 2 '& 2σ *) σ 2π 1

+∞

∫ f (x)dx = 1









σ 2π



X −σ

−∞

EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine







X

X +σ

x 24

Joint Probability (1)

Consider 2 random variables:

(

P(x, y) ≡ P X ≤ x and Y ≤ y

)

If X and Y are statistically independent (i.e., uncorrelated):



(

)

P X ∈ [ x, x + dx ] and Y ∈ [ y, y + dy ] = p X (x) ⋅ pY (y) ⋅dx dy



EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

25

Joint Probability (2) Consider sum of 2 random variables:

Z = X +Y

(

) ∫∫

P Z ∈ [ z0 , z0 + dz ] =

y

strip

% =' &



p X (x)pY (y) dx dy

( p X (x)pY (z0 − x) dx * dz −∞ )







x + y = z0 + dz €

x + y = z0 € €

p Z (z0 )

dy = dz

dx

EECS 270C / Spring 2014

determined by convolution of pX and pY.

x



Prof. M. Green / U.C. Irvine

26

Joint Probability (3) Example: Consider the sum of 2 non-Gaussian random processes:

*

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

27

Joint Probability (4) 3 sources combined:

*

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

28

Joint Probability (5) 4 sources combined:

*

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

29

Joint Probability (6) Noise sources

Central Limit Theorem: Superposition of random variables tends toward normality.

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

30

Fourier transform of Gaussians: p X (x) =

% 2( −(x − X ) * exp' '& 2σ 2 *) 2π X

1

σX

% 1 2 2( PX (ω ) = exp'− σ X ω * & 2 )

F

Recall:



& P Z ∈ [ z0 , z0 + dz ] = ( '

(

) ∫

p Z (z0 ) =



) € p X (x)pY (z0 − x) dx + dz −∞ *





−∞



F

p X (x)pY (z0 − x) dx

PZ (ω ) = PX (ω ) ⋅PY (ω ) % 1 ( % 1 ( = exp'− σ 2X ω 2 * ⋅exp'− σ Y2 ω 2 * & 2 ) & 2 )

€ p Z (z) =

1

(

2 π σ 2X + σ Y2

)

% −(z − Z)2 exp' '2 σ 2 +σ 2 X Y &

(

)

( * * )



F -1



% 1 ( = exp'− (σ 2X + σ 2X )ω 2 * & 2 )

Variances of sum of random normal processes add. €



EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

31

Autocorrelation function RX(t1,t2): Expected value of the product of 2 samples of a random variable at times t1 & t2.

RX (t1,t2 ) = E [ X (t1) ⋅ X (t2 )]



For a stationary random process, RX depends only on the time difference τ = t1 − t 2

RX (τ ) = E [ X (t) ⋅ X (t + τ )] for any t 2 Note RX (0) = σ

€ €

€ Power spectral density SX(ω): 2* ' +∞ ) , SX (ω ) = E) X (t) ⋅ e − jωt dt , )( −∞ ,+



EECS 270C / Spring 2014



SX(ω) given in units of [dBm/Hz]

Prof. M. Green / U.C. Irvine

32

Relationship between spectral density & autocorrelation function:

1 RX (τ ) = 2π





−∞

SX (ω ) ⋅e jωτ dω

1 ⇒ RX (0) = σ = 2π



2



−∞

SX (ω )dω





infinite variance (non-physical)

Example 1: white noise SX (ω )

RX (τ )





τ

ω

( )

SX ω = K



EECS 270C / Spring 2014

RX (τ ) =



Prof. M. Green / U.C. Irvine

K ⋅δ t 2π

()

33

Example 2: band-limited white noise RX (τ )

SX (ω )

σ2 =

1 Kω p 2

K € €



€ −ω p

( )

SX ω = €



ωp

ω

K ω2 1+ 2 ωp

RX (τ ) = σ 2e



−ω p τ

τ

p X (x)

For parallel RC circuit capacitor€voltage noise: € i n2 K= ⋅R2 = 2kBTR Δf

ωp =

σ V2C =

1 RC

kBT C

−σ

€ EECS 270C / Spring 2014





Prof. M. Green / U.C. Irvine





x 34



Random Jitter (Time Domain)

Experiment: CLK

data source

EECS 270C / Spring 2014

DATA

CDR (DUT)

RCK

Prof. M. Green / U.C. Irvine

analyzer

35

Jitter Accumulation (1)

Experiment: Observe N cycles of a free-running VCO on an oscilloscope over a long measurement interval using infinite persistence.

NT Free-running oscillator output

Tosc =

1

τ4

fosc

σ1 €

τ3

τ2

τ1

σ2

trigger

EECS 270C€ / Spring 2014



σ3



Prof. M. Green€ / U.C. Irvine

σ4

Histogram plots

36

Jitter Accumulation (2)

σ τ2

€ €

τ proportional to τ

proportional to τ2

Observation: As τ increases, rms jitter increases. EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine



37

Noise Spectral Density (Frequency Domain) Single-sideband spectral density:

Power spectral density of oscillation waveform:

( ) [dBc Hz]

Ltotal Δf

Sv(f)

[dBm Hz]

1/Δf3 region (-30dBc/Hz/decade)

€ 1/Δf2 region (-20dBc/Hz/decade)



fosc

fosc+Δf

" P f + Δf 1Hz osc Ltotal (Δf ) = 10 log$ $# Ptotal

(

EECS 270C / Spring 2014

Δf (log scale)

) %' '&

Ltotal(Δf) given in units of [dBc/Hz] Ltotal includes both amplitude and phase noise Prof. M. Green / U.C. Irvine

38

Noise Analysis of LC VCO (1) noise from resistor

+

C

L

R

vc

-R

_

C

L

active circuitry

ωr =



1 LC

Z( jω ) =

R Q= ωr L

Consider € frequencies near resonance:

[(

(

)]

Z j ωr + Δω = 1−

ωr L = €

2 r

( )

ω + 2ωr Δω + Δω

2

j ωL $ ω '2 1− & ) % ωr (



ωr2 ≈ jL ⋅ 2Δω

ωr2 R R ωr ⇒ Z j ωr + Δω ≈ j ⋅ Q 2Q Δω

EECS 270C / Spring 2014



)

j ωr + Δω L

inR

[(

ωr ωr + Δω

)]

Prof. M. Green / U.C. Irvine

€ €

39

Noise Analysis of LC VCO (2) +

vc _

Spot noise current from resistor: C

L

inR

2 i nR =

4kT ⋅ Δf R

2 v c2 = i nR ⋅| Z( jω ) |2



% ωr Δω (2 4kT = Δf ⋅ 'R * R 2Q ) & % ωr Δω (2 = 4kTR ⋅ ' * ⋅ Δf & 2Q )

Leeson’s formula (taken from measurements): € 2 +- % (2 /-% ω 3 (5 kT ω r L{ Δω} = 10 ⋅ log4F ⋅ ,1+ ' * 0''1+ 1/ f **7 4 Psig - & 2Q ⋅ Δω ) Δω )7 . 1& 3 6

spot noise relative to carrier power

dBc/Hz

Where F and ω1/f3 are empirical parameters. €

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

40

Oscillator Phase Disturbance ip(t)

ip(t)

Current impulse Δq/Δt

ip(t)

_

t

τ1

Vosc +

Vosc(t)

Vosc(t)

Δφ = 0



t

τ2





Δφ < 0



Vosc jumps by Δq/C

•  Effect of electrical noise on oscillator phase noise is time-variant. •  Current impulse results in step phase change (i.e., an integration). ⇒ current-to-phase transfer function is proportional to 1/s EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

41

Impulse Sensitivity Function (1) The phase response for a particular noise source can be determined at each point τ over the oscillation waveform. Δφ (τ ) ⋅q max Impulse sensitivity function (ISF): Γ(τ ) ≡ Δq = C ⋅Vmax

change in phase charge in impulse Example 1: sine wave



Example 2: square wave



Vosc (t) Vmax €



Vosc (t)

t

t

Γ(τ )

Γ(τ )





(normalized to signal amplitude)

τ

τ

Note Γ has same period as Vosc. EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

42

Impulse Sensitivity Function (2) Recall from network theory:

H(s) h(t)

i in

LaPlace transform:

φout

Φ out (s) = H(s) Iin (s) t

Impulse response: φout (t) =

∫ h(t,τ ) ⋅ i

in

(τ ) dτ

0





€ Recall: € Γ(τ ) ≡

Δφ (τ ) Γ(τ ) ⋅q max ⇒ Δφ (τ ) = ⋅ Δq Δq q max

ISF convolution integral: t Γ(τ ) φ (t) = ⋅u(t − τ ) ⋅ [i (τ ) ⋅dτ ] = € q max 0





t

∫ qΓ(τ ) ⋅i (τ ) ⋅dτ 0

time-variant impulse response

max

Γ can be expressed in terms of Fourier coefficients: ∞

from Δq

Γ(τ ) =

= 1 for τ ∈ (0,t)

∑c

k

(

cos kωoscτ + θ k

k=0

€ € EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine



43

)

Impulse Sensitivity Function (3) Case 1: Disturbance is sinusoidal:

[(

)]

i (t) = I0 cos mωosc + Δω t , m = 0, 1, 2, …

(Any frequency can be expressed in terms of m and Δω.)

I φ (t) = 0 q max





t

∑ c ∫ {cos(kω k

k=0

0

osc

)

) ] } dτ

[(

τ + θ k ⋅ cos mωosc + Δω t

Γ(τ ) I = 0 2q max



& sin (k + m)ω + Δω t + θ sin [(k − m)ωosc + Δω ]t + θ k [ ] ( osc k ck ' + (k + m) ω + Δ ω (k − m)ωosc + Δω () osc k=0 ∞



{





negligible

(

sin Δω t + θ k I0 ≈ ⋅cm ⋅ 2q max Δω EECS 270C / Spring 2014



}

{

} *(+ (,

significant only for m=k

) Prof. M. Green / U.C. Irvine

44

Impulse Sensitivity Function (4)

[(

)]

For i (t) = I0 cos mωosc + Δω t



(

)

sin Δω t + θ k I0 I02 cm2 2 φ (t) ≈ ⋅cm ⋅ ⇒φ = 2 ⋅ 2q max Δω 8q max Δω

( )

2

Current-to-phase frequency response: I



ωosc

ω1

×



I0 c0 2q max ω1

φ

EECS 270C / Spring 2014

×

I0 c1 2q max ω1



ω1

2ωosc

ωosc-ω1

ωosc+ω1





2ωosc-ω1 2ωosc+ω1

×

ω

I0 c2 2q max ω1

€ Δω

Prof. M. Green / U.C. Irvine

45

Impulse Sensitivity Function (5) Case 2: Disturbance is stochastic: 2 MOSFET current noise: i n (f ) = 4kTγgm + gm2 Kf Δf Cg f i n2 Δf cm2 2 φ Δf ≈ 2 ⋅ thermal 1/f 8q max Δω 2 noise noise

A2/Hz

in

( )



i n2 Δf

€ 1/f noise

gm2

2 π ⋅ Kf Cg ω

thermal noise

×c0







i n2 Δf

€4kTγgm 2ωosc

ωosc

€ Sφ Δω

×c0

ω €

×c2

×c1 2ωosc

ωosc





( )

€ EECS 270C / Spring 2014

Δω

Prof. M. Green / U.C. Irvine

46

ω

Impulse Sensitivity Function (6) 1 Total phase noise: Sφ (Δω ) = 2 8q max



( )

×c0



( )

due to thermal noise

i n2 Δf



∞ * , ck2 , gm2 Kf c02 0 + 2π ⋅ , 4kTγgm ⋅ 2 C g Δω Δω , ,+

due to 1/f noise

×c1

ωn €

×c2 2ωosc

ωosc



/ / 3/ / /.

ω



( )

Sφ Δω

2 0

( )

c = Γ

2



€ EECS 270C / Spring 2014

Δω

∑ k=0

Prof. M. Green / U.C. Irvine



ck2 = Γrms

( )

2

47

Impulse Sensitivity Function (7) Sφ (Δω ) =

1 2 8q max

4kTγgm ⋅



) Γrms + 4kT γ g ⋅ m + Δω +*

( ) ( )

( ) (Δω) Γrms

2

2

= 2π

2 m

2

2

, g Kf . + 2π ⋅ 3. Cg Δω .-

( )

2 m

Γ

2

( )

( ) Γ

g Kf ⋅ Cg Δω

2

( )

3



Δωn,phase

2 ( + π g Γ = ⋅ m ⋅ ** 2kT γCg ) Γrms -,

noise corner frequency ωn

€ Sφ Δω (dBc/Hz)

( )

€ 1/(Δω)3



region: −30 dBc/Hz/decade € 1/(Δω)2 region: −20 dBc/Hz/decade

Δωn,phase

Δω (log scale)

Prof. M. Green / U.C. Irvine

EECS 270C / Spring 2014



48

Impulse Sensitivity Function (8) Example 1: sine wave Vosc (t)

Example 2: square wave Vosc (t)

t



t



Γ(τ )

Γ(τ )

τ



τ



Γrms is higher ⇒ will generate more 1/(Δω)2 phase noise

Example 3: asymmetric square wave Vosc (t)



t



Γ(τ )

τ



Γ > 0 ⇒ will generate more 1/(Δω)3 phase noise Prof. M. Green / U.C. Irvine

EECS 270C / Spring 2014



49

Impulse Sensitivity Function (9) Effect of current source in LC VCO:

Due to symmetry, ISF of this noise source contains only even-order coefficients − c0 and c2 are dominant. +

Vosc

EECS 270C / Spring 2014

_

⇒ Noise from current source will contribute to phase noise of differential waveform.

Prof. M. Green / U.C. Irvine

50

Impulse Sensitivity Function (10) ID varies over oscillation waveform

Same period as oscillation

i n2 = 4kTγgm (t) Δf & ) W = (4kTγ ) ⋅ ( µCox ⋅ VGS (t) −Vt + L ' *

(

2 & ) i n0 W = (4kTγ ) ⋅ ( µCox ⋅ VGS(DC ) −Vt + Let Δf L ' *

(



2 2 i i n n0 Then = ⋅ α (t) Δf Δf €

We can use

VGS (t) −Vt VGS(DC ) −Vt

€ Prof. M. Green / U.C. Irvine



where α (t) =

)

Γeff (τ ) = Γ(τ ) ⋅ α (τ )

€ EECS 270C / Spring 2014

)

51

ISF Example: 3-Stage Ring Oscillator R1A

R1B

M1A

M1B MS1

R2A

R2B

M2A

M2B MS2

R3A

R3B

M3A

+ Vout −

M3B MS3

fosc = 1.08 GHz PD = 11 mW

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

52

ISF of Diff. Pairs ISF by tx1 for 3stage differential ring osc

ΓM1A

3

3

2

2

2

1

1

-1

0

1

2

3

4

5

6

-2

7

-1

0

1

4

5

6

7

0 -1

-3

-4

-4

-4

-5

-5

3

2

2

1

1



0 -1

2

3

4

5

-2

6

7

ΓM2B

7

5

6

7

1

€ 0

1

2

3

4

5

-2

6

7

0 -1

-4

-4

-5

0

1

2

3

4

-2

-4

Γ = −0.26

6

2

-3

Γrms = 1.86

5

ISF by tx6 for differential ring osc

ΓM3B

-3

-5 Radian

Radian

4

3

-3

-5

3

Radian

ISF by tx4 for differential ring osc

0 -1

2

-5

ISF by tx6

ISF by tx2 for differential ring osc

1

1

Radian

3

0

0

-2

-3

ISF by tx4

ISF by tx2

3

-3

ΓM1B

Radian

for each diff. pair transistor

EECS 270C / Spring 2014



2

-2

Radian



1



0

ISF by tx5



0

ISF by tx5 for differential ring osc

ΓM3A

3

ISF by tx3

ISF by tx1



ISF by tx3 for differential ring osc

ΓM2A

Prof. M. Green / U.C. Irvine

53

ISF of Resistors

ΓR1A

ΓR2A





Γrms = 1.72 Γ = −0.16



ΓR3A



for each resistor

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

54

ISF of Current Sources

ISF by tail tx1 for differential ring osc

ΓMS1

2

2

1.5

1.5

1.5

ISF by tail tx1

0.5 0 -0.5

0

1

2

3

4

5



1

6

7

1

0.5 0 -0.5

0

1

2

3

4

5

6

ISF by tail tx3



1

7

0.5 0 -0.5

-1

-1

-1

-1.5

-1.5

-1.5

-2

-2 Radian

Γrms = 1.00 Γ = −0.12

ISF by tail tx3 for differential ring osc

ΓMS3

2

ISF by tail tx2



ISF by tail tx2 for differential ring osc

ΓMS2

0

1

2

3

4

5

6

-2 Radian

Radian

for each current source transistor ISF shows double frequency due to source-coupled node connection.

€ EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

55

7



Phase Noise Calculation Using: Cout = 1.13 pF Vout = 601 mV p-p qmax = 679 fC 2 2 2 Γrms(dp) 4kTγ gm(dp) Γrms(res) Γrms(cs) 4kTγ gm(cs) 4kT R L{Δf } = 6 ⋅ 2 2 ⋅ + 6⋅ 2 2 ⋅ 2 + 3⋅ 2 2 ⋅ 2 2 8π Δf qmax 8π Δf qmax 8π Δf qmax

322 Δf 2

€ 514 €Δf 2

⇒ L{Δf } =

122 Δf 2

= −112 dBc/Hz @ Δf = 10 MHz

EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

70 Δf 2



56

Phase Noise vs. Amplitude Noise (1)

How are the single-sideband noise spectrum Ltotal(Δω) and phase spectral density Sφ(ω) related?

[(

)]

Vosc (t) = [Vc + v (t)] ⋅exp j ωosc t + φ (t)



vφ φ ωosct

EECS 270C / Spring 2014

v

Spectrum of Vosc would include effects of both amplitude noise v(t) and phase noise φ(t).

Prof. M. Green / U.C. Irvine

57

Phase Noise vs. Amplitude Noise (2) Recall that an input current impulse causes an enduring phase perturbation and a momentary change in amplitude: i(t)

i(t)

t Vc(t)

t Vc(t)

Δt = 0

EECS 270C / Spring 2014

Δt =

Δq ω osc

Prof. M. Green / U.C. Irvine

Amplitude impulse response exhibits an exponential decay due to the natural amplitude limiting of an oscillator ...

58

Phase Noise vs. Amplitude Noise (3) ( )

( )

Lφ Δω

Lamp Δω





+

ωc

Δω

Δω

Q

( )

Ltotal Δω Δω



Phase noise dominates € at low offset frequencies.



Δω

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

59



Phase Noise vs. Amplitude Noise (4) Sv(ω)

( ≈ (V

) ( + v (t)) ⋅ [cos(ω

Vosc (t) = Vc + v (t) ⋅ cos ωosc t + φ (t) c

osc

)

t) − φ (t) ⋅ sin(ωosc t)]

= Vc cos(ωosc t) − φ (t) ⋅Vc sin(ωosc t) + v (t) ⋅ cos(ωosc t) noiseless oscillation waveform

phase noise component

amplitude noise component

Amplitude limiting will decrease amplitude noise but will not affect phase noise.

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

phase noise

amplitude noise

ωosc

ω

Phase & amplitude noise can’t be distinguished in a signal.

60

Sideband Noise/Phase Spectral Density (

)

Vosc (t) = Vc ⋅ cos ωosc t + φ (t)

≈ Vc ⋅ [cos(ωosc t) − φ (t) ⋅ sin(ωosc t)]

Vc ⋅ cos(ωosc t) −Vc ⋅ φ (t) ⋅ sin(ωosc t)



noiseless oscillation waveform



Pphase noise Psignal

phase noise component

1 2 2 Vc ⋅ φ 2 = = φ2 1 2 Vc 2

( )

Lphase Δω =

1 ⋅Sφ Δω 2

( )

€ € EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

61

Jitter/Phase Noise Relationship (1) NT

σ τ2 ≡ =

2, 1 ) ⋅E φ (t + τ ) − φ (t) * [ ] 2 + . ωosc

1 2 2 ⋅ E φ (t + τ ) + E φ (t) − 2E [φ (t) ⋅ φ (t + τ )] 2 ωosc

{ [

autocorrelation functions





] [

Rφ (0)

}

]

Rφ (0)

2Rφ (τ )

2 ⋅ [Rφ (0) − Rφ (τ )] 2 ω € osc € €

⇒ σ τ2 =

Recall Rφ and Sφ(Δω) are a Fourier transform pair:

1 Rφ (τ ) = 2π





−∞

EECS 270C / Spring 2014



Sϕ (Δ€ ω ) ⋅e j ( Δω )τ d(Δω ) Prof. M. Green / U.C. Irvine

62

Jitter/Phase Noise Relationship (2) 1 Rφ (0) = 2π 1 Rφ (τ ) = 2π





∫ S (Δω)d(Δω) φ

−∞ ∞

∫ S (Δω) ⋅e

j ( Δω )τ

φ

d(Δω )

−∞



1 j ( Δω )τ σ = ⋅ S (Δ ω ) 1− e d(Δω ) φ 2 πωosc −∞



2 τ

(

)



1 = ⋅ Sφ (Δω ) [1− cos(Δω τ ) − j sin(Δω τ )] d(Δω ) 2 πωosc −∞



4 = ⋅ 2 πωosc



EECS 270C / Spring 2014



∫ 0

, Δω τ / Sφ (Δω ) ⋅sin . 1 d(Δω ) 2 0 2

Prof. M. Green / U.C. Irvine

63

Jitter/Phase Noise Relationship (3) 3

2

Jitter from 1/(Δω) noise:

Jitter from 1/(Δω) noise:

a^ Let

Sφ (Δω ) = (Δω )2





4 σ τ2 = ⋅ 2 πωosc



∫ 0

( + a^ 2 (Δω )τ ⋅sin * - d(Δω ) 2 2 (Δω ) ) ,

4 a^ πτ = ⋅ 2 πωosc 4

= €



a^ 2 ωosc



⋅τ

Let

Sφ (Δω ) =



4 σ τ2 = ⋅ 2 πωosc



∫ ε

b (Δω )3

( + b 2 (Δω )τ ⋅sin * - d(Δω ) 3 (Δω ) ) 2 ,

=ζ ⋅τ2

€ a = 2 ⋅ τ where a^ ≡ (2π )2 ⋅a € fosc

Consistent with jitter accumulation measurements!

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

64

Jitter/Phase Noise Relationship (4) ( )

Sφ Δf



(dBc/Hz)

•  Let fosc = 10 GHz •  Assume phase noise dominated by 1/(Δω)2

-20dBc/Hz per decade -100

( )

Sφ Δf =

a (Δf )2

Setting Δf = 2 X 106 and Sφ =10-10:

(

Δf€

2 MHz

)

Sφ 2 ⋅106 =

a

(2 ⋅10 ) 6

2

= 10−10 ⇒ a = 400

Accumulated jitter:

σ τ2 =



a 400 ⋅ τ = fc2 10 ⋅109

(

EECS 270C / Spring 2014

)

2

[

]

⋅ τ€= 4 ⋅10−18 ⋅ τ



[

]

σ τ = 2 ⋅10−9 ⋅ τ Let τ = 100 ps (cycle-to-cycle jitter): ⇒ στ = 0.02ps rms (0.2 mUI rms)

Prof. M. Green / U.C. Irvine

65

Jitter/Phase Noise Relationship (5) More generally:

( )

Sφ Δf



a (Δfm )2 ⋅10Nm 10 Sφ Δf = = (Δf )2 (Δf )2

( )

(dBc/Hz)

σ τ2 =

-20 dBc/Hz per decade€

Nm

Δf

2 fosc

% f (2 ⋅ τ = ' m * ⋅10Nm 10 ⋅ τ & fosc )

$f ' σ τ = & m ) ⋅10Nm 20 ⋅ τ % fosc (



Δfm

a

στ = fm ⋅10Nm 20 ⋅ τ Tosc

[ps]

[UI]

€ Let phase noise increase by 10 dBc/Hz:

στ € ( Nm+10) → fm ⋅10 Tosc

20

& ) ⋅ τ = (fm ⋅10Nm 20 ⋅ τ + ⋅100.5 ' *

⇒ rms jitter increases by a factor of 3.2



EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

66

Jitter Accumulation (1) φin φfb

phase detector

loop filter

VCO

Kpd

F (s)

Kvco



÷N

Open-loop characteristic: €

φvco

+

φout



φout K 1 = G(s) = K pd ⋅F (s) ⋅ vco ⋅ φε 2πs N

NG(s) 1 φ = ⋅ φ + ⋅ φvco Closed-loop characteristic: out in 1+G(s) 1+G(s) €

€ EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

67

Jitter Accumulation (2) G(s) =

Recall from Type-2 PLL:

Ich Kvco 1 1+ sCR ⋅ 2 ⋅ N s (C + Cp ) 1+ sCeq R

-40 dB/decade

( )

Sφ Δω (dBc/Hz)



|1 + G| |G| z

1

φout jΔω φvco

(

ω0

p

Δω

1/(Δω)3 region: −30 dBc/Hz/decade € 1/(Δω)2 region: −20 dBc/Hz/decade

2

)

Δωn,phase

Δω

€ As a result, the phase noise at low offset frequencies is determined by input noise...



80 dB/decade

ω0

EECS 270C / Spring 2014

Δω

Prof. M. Green / U.C. Irvine

68

Jitter Accumulation (3)

( )

Sφ Δf



-100

•  fosc = 10 GHz •  Assume 1-pole closed-loop PLL characteristic

(dBc/Hz)

+ a , Δf << Δf0 2 2 Δf0 - Δf0 Sφ Δf = ≈ , $ Δf '2 - a , Δf >> Δf 0 1+ & ) - Δf 2 % Δf0 ( . a

-20dBc/Hz per decade

( )

( )

( ) ( )



€ Δf0 = 2 MHz

Rφ (τ ) =

⇒ σ τ2 = =



(2π ⋅ Δf )

⋅e −2 π ⋅f0τ

2 ⋅ [Rφ (0) − Rφ (τ )] 2 2π ⋅fosc a 2 fosc

1− e −2 π ⋅f0 τ ⋅ 2π ⋅ Δf0

Prof. M. Green / U.C. Irvine

EECS 270C / Spring 2014

a 0

−∞

Δf €



Sφ (Δf ) ⋅e j (2 πΔf )τ ⋅d(Δf ) =

69

Jitter Accumulation (4) 2 τ

σ =

a 2 fosc

1− e −2 π ⋅f0 τ ⋅ 2π ⋅ Δf0

) a 1 ⋅ τ , τ << + 2 + fosc 2 π (Δf0 ) ≈* 1 1 + a ⋅ , τ >> 2 +, fosc 2 π (Δf0 ) 2 π (Δf0 )

a = 4 × 102 Δf0 = 2 MHz



fosc = 10 GHz



σ τ2 (log scale)



slope =



For small τ: στ = 0.02 ps rms cycle-to-cycle jitter For large τ: στ = 1.4 ps rms Total accumulated jitter

a 2 fosc

τ

1 (2π ) ⋅(2 MHz)



EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

70

Jitter Accumulation (5) σ τ2 (log scale) proportional to τ2 (due to 1/f noise)

€ proportional to τ (due to thermal noise)

τ

The primary function of a PLL is to place a bound on cumulative jitter: σ τ2 (log scale)



τ

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

71

Closed-Loop PLL Phase Noise Measurement

L(Δω) for OC-192 SONET transmitter EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

72

Other Sources of Jitter in PLL

•  Clock divider •  Phase detector Ripple on phase detector output can cause high-frequency jitter. This affects primarily the jitter tolerance of CDR.

EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

73

Jitter/Bit Error Rate (1) Eye diagram from sampling oscilloscope

Histogram showing Gaussian distribution near sampling point 2σ L



2σ R

L



R

1UI

Bit error rate (BER) determined by σ and UI … EECS 270C / Spring 2014

Prof. M. Green / U.C. Irvine

74

Jitter/Bit Error Rate (2)

& 1 ( T −t pR (t) = ⋅exp(− 2σ 2 σ 2π ('

(

& t ) 1 pL (t) = ⋅exp(− 2 + ' 2σ * σ 2π 2











0

t0

T 2

T

T − t0 €

R

& x2 ) PL = ⋅ exp(− 2 + dx Probability of sample at t > t0 from left-€ t0 € ' 2σ * σ 2π € hand transition: 2) & T − x ∞ Probability of sample at t < t0 from right1 ( + P = ⋅ exp − dx R 2 ( + hand transition: t0 2σ σ 2π (' +* € EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine

1









(

)

75

)

2

) + + +*

Jitter/Bit Error Rate (3) & x2 ) PL = ⋅ exp(− 2 + dx t0 ' 2σ * σ 2π 1





& 1 ( T −x PR = ⋅ exp(− t0 2σ 2 σ 2π ('







(

)

) 1 + dx = ⋅ + σ 2π +*

2

& x2 ) exp(− 2 + T−t 0 ' 2σ *





Total Bit Error Rate (BER) given by:



& x2 ) 1 BER = PL + PU = ⋅ exp(− 2 + dx + ⋅ t0 2 σ ' * σ 2π σ 2π 1





& x2 ) exp(− 2 + dx T−t 0 ' 2σ *





# t & #T − t &1* 0 0 = ,erfc%% (( + erfc%% ((/ 2 ,+ $ 2σ ' $ 2σ '/.



where erfc(t) ≡

2

π

€ EECS 270C / Spring 2014







t



( )

exp −x 2 dx Prof. M. Green / U.C. Irvine

76

Jitter/Bit Error Rate (4) Example: T = 100ps log(0.5)

log BER σ = 2.5 ps σ = 5 ps € €









t0 (ps)

σ = 2.5 ps : € €

€ € BER ≤ 10−12 for t0 ∈ [18ps, 82ps] (64 ps eye opening)

σ = 5 ps : BER ≤ 10−12 for t0 ∈ [36ps, 74ps] (38 ps eye opening)

€ €

EECS 270C / Spring 2014

€ €

Prof. M. Green / U.C. Irvine

77

Bathtub Curves (1) The bit error-rate vs. sampling time can be measured directly using a bit error-rate tester (BERT) at various sampling points.

Note: The inherent jitter of the analyzer trigger should be considered.

( ) RJ Jrms

2 measured

EECS 270C / Spring 2014



( )

RJ = Jrms

2 actual

( )

RJ + Jrms

2 trigger

Prof. M. Green / U.C. Irvine

78

Bathtub Curves (2) Bathtub curve can easily be numerically extrapolated to very low BERs (corresponding to random jitter), allowing much lower measurement times.

Example: 10-12 BER with T = 100ps is equivalent to an average of 1 error per 100s. To verify this over a sample of 100 errors would require almost 3 hours! •







EECS 270C / Spring 2014









t0 (ps) Prof. M. Green / U.C. Irvine

79

Equivalent Peak-to-Peak Total Jitter p(t) BER

RJ JPP

10-10

12.7 ⋅ σ

10-11

13.4 ⋅ σ

€€ 10-12

14.1⋅ σ

10-13€

14.7 ⋅ σ

10-14€

15.3 ⋅ σ

Areas sum to BER





1 nσ 2



σ, T determine BER

RJ BER determines effective JPP Total jitter given by:



1 nσ 2



DJ J TJ = n ⋅ σ + JPP €

(

)

EECS 270C / Spring 2014



Prof. M. Green / U.C. Irvine

80