May 08
Medical Image Registration: Data Fusion in 3D Medical Imaging
Christian Barillot CNRS Director of Research VisAGeS U746 Unit/Project, INRIA/INSERM IRISA, UMR CNRS 6074 Campus de Beaulieu 35042 Rennes Cedex, FRANCE
[email protected] http://www.irisa.fr/visages
Plan
General Context Illustration of Data Fusion Issues Principal of Data Fusion in 3D Medical Imaging Image Registration
Basic Concepts A Focus on Deformable Registration
Local, Global and Hybrid methods
Cooperation between segmentation and registration tasks Perspectives
Deformable registration Sharing heterogeneous and distributed resources C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
1
May 08
General Context and Challenges
1 GB
Context :
Molecular Biology /
Expansion of the quantity of data produced and processed in medical imaging (« from the volume to the mass ») Explosion of the IST and the electronic communication resources
Challenges :
DTDT-MRI
0,5 MB
2D CT
3D CT
70's
3D PET SPECT
fMRI
3D MRI
80's
90's
2000's
2010's
To guide the clinician (e.g. a neurologist) within the mass of information to integrate into the medical decision process
► MS lesions 12000 images*/patient/year
To guide the surgeon for the exploitation of the different sensors and effectors (e.g. robots) to use in the interventional theater
► Epilepsy surgery 7000 images*/intervention *: 1 image = 1 2D MRI slice
C. Barillot, Visages U746, IRISA, Rennes
Coming issues
To conceive the surgical room of the future
To better understand the healthy and pathological states of organs at different scales (human physiome)
Intra-operative multimodal sensors & effectors (e.g. robots) at macro, micro and nano scales To manage the sources of information from observation & knowledge
Imagery of pathologies : from the gross organ to the molecule Modeling healthy and pathological group of individuals from selected image descriptors (computational anatomy and function)
To connect people and medical resources thru high band networks and pooling of information sources for:
Discovering unlikely events Data mining and knowledge discovery Validation and certification of new drugs
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
2
May 08
Research issues
Need to interconnect medical information resources (data, programs, medical devices) together:
Data fusion of medical images Merge semantic and computational Grid technologies Development of new adaptive medical devices (effectors, sensors, …) C. Barillot, Visages U746, IRISA, Rennes
Illustration of Data Fusion Issues
Christian BARILLOT, Visages Team, IRISA, Rennes, France
3
May 08
Epilepsy Surgery Patient selection Semiology of crisis and relations to anatomy « Static » Exams (search of lesions) « Dynamic » Exams (search of epileptogenic status): ¾ ¾
Interictal : functional imaging, Electrodes Implant Ictal : Crisis Recordings and labeling
Presurgical Planning Cortectomy (surgery) C. Barillot, Visages U746, IRISA, Rennes
Integration of metabolic and functional imaging for presurgical mapping EEG
MEG
SPECT Inter-ictal
Ictal
Spatial Resolution (mm)
10 Inter-ictal Spikes in Epilepsy
8
Cerebral Perfusion
FDG-PET
6 4 2
inter-ictal Metabolism of glucose
Reference
intra-cerebral Electrodes
1 ms
Anatomic MRI
fMRI
1 second
40 seconds
static
Temporal Resolution C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
4
May 08
Magnetic Resonance Imaging (MRI) Proton Density - NMR ¾ 256
x 256 pixels (1mm resolution)
¾ From
20 to 120 slices along three
axis
C. Barillot, Visages U746, IRISA, Rennes
» Exams
(Source: [A. Biraben et al., CHU Rennes])
« Static
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
5
May 08
Single Photon Emission Computed Tomography (SPECT) Distribution of a radio tracer ¾ Typical
64 x 64 à 128 x 128 pixels (resolution 3 to 5mm)
¾ 64
to 128 slices per volume
C. Barillot, Visages U746, IRISA, Rennes
«Dynamic» Metabolic Exams
(Source: [A. Biraben et al., CHU Rennes])
Extended temporal hypo metabolism
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
6
May 08
Fusion of “Static” and «Dynamic» Exams MRI +interictal +interictal SPECT (HMPAO)
Brain MRI + ictal SPECT
C. Barillot, Visages U746, IRISA, Rennes
Intra cerebral electrodes implant in stereotactic conditions MRI
Angiography 3D - 2D Projections
Registration of 3D referential stereotactic referential
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
7
May 08
Intra cerebral electrodes recordings
C. Barillot, Visages U746, IRISA, Rennes
Dynamic Exams and Pre-operative Planning:
MEG Signals
Functional recording of epileptic region environment
MEG Recordingd C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
8
May 08
Functional Imaging :
MagnetoEncephaloGraphy (MEG) Measure of the magnetic field issued by the neuronal activity : : 10-13 Tesla : 10-3 Tesla ¾ MRI : 1 to 3++ Tesla ¾ Brain
¾ Hearth
40 to 150+ sensors (SQUID) spontaneous and evoked potentials, e.g.: ¾ motor ¾ somesthesic ¾ language ¾ visual
C. Barillot, Visages U746, IRISA, Rennes
MEG : Spatiotemporal
Probabilité Probabilités
analysis of Spatio-temporal MEG analysis of interictal spikes
interictal spikes
[Source : D.P. Schwartz, et al., Neuroimage:Functional Mapping of the Human Brain, 7(4):S466, 1998]
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
9
May 08
MEG : Spatiotemporal Interictal Analysis Localization
100 ms
0 ms
Left Hemisphere
C. Barillot, Visages U746, IRISA, Rennes
Epilepsy Surgery : Preoperative Planning
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
10
May 08
Talairach Atlas
C. Barillot, Visages U746, IRISA, Rennes
Functional Mapping of language areas
Silent vs Active Word Activation
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
11
May 08
C. Barillot, Visages U746, IRISA, Rennes
Preoperative Planning :
functional MRI (fMRI)
Paradigm
Acquisition
A
A R
R time
mean of activation A Mean of rest state R intensity
Detection
pixel time C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
12
May 08
Epilepsy Surgery:
Superposition of graphical data
C. Barillot, Visages U746, IRISA, Rennes
Image Guided Surgery
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
13
May 08
Image-Guided Neurosurgery:
Interventional procedure (Neuronavigation) 3D referential system
3D workstation
Surgical Microscope 3D localizer
Patient
C. Barillot, Visages U746, IRISA, Rennes
Surgical resection
Electrodes landmarks
Resection C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
14
May 08
Evolution in Computer assisted surgery Integration of new models and observations
Integration of new preoperative images (e.g. DT-MRI) Fusion between multimodal pre-operative images with intra-operative images to adapt the planning “in real time” for taking into account intra-operative deformations (e.g. brain shift)
2.5D Image
3D US Imagery
Courtesy I. Corouge, UNC
Preoperative Imagery
IntraIntra-operative Imagery
Fusion of observations C. Barillot, Visages U746, IRISA, Rennes
Cooperative Scheme for Data Fusion Multimodal Registration
Original
Registered Data
Segmentation
Data
Segmented Data
Modeling
Modeled Data
Deformable Registration
a priori Knowledge
Information Model
a posteriori Knowledge
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
15
May 08
Intra-Individual Data Fusion MRI
2D/3D Angiography
EEG/SEEG
Anatomical and Functional Imagery SPECT
CT
PET
MEG
fMRI
Segmentation and Labeling
Multimodal Registration Anatomical Landmarks Instrumental Referential Fiducial Markers
Contours Regions Deformable Models
Linear Transformations
Anatomical Labels
3D Visualization/Interaction Subject Data Base
• Multi-Objects/Volumes Visual. •Graphic/Voxels Visual. •Interactive Labeling
Inter-Individual Fusion
C. Barillot, Visages U746, IRISA, Rennes
Subject i
Subject n
Data Base
Data Base
Deformation Model
Affine
Higher Order
3D Numerical Model
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
16
May 08
Data Fusion in medical imaging What is Data Fusion? Joint Use of Heterogeneous Data
Why? Co-exploitation of multimodal data Registration / Matching
Which Context ? Computer assisted image interpretation systems
C. Barillot, Visages U746, IRISA, Rennes
Image Registration Basic concepts
Christian BARILLOT, Visages Team, IRISA, Rennes, France
17
May 08
Image Registration : Basic Concepts Source Image Is
ps2 p2
ps1 p1 p1 p1 p p1 p2 p2 p2 ppdd2 22
ps3 p3
p3 p3
p3
Destination pp pd11d1 Image Id
pd3 p3 p 3 d
¾ The notion of registration is to: Find a matching between points in one space (an image) and points in another space (also called a referential). Problem: Find a Transformation Φ Such as Is Φ Id Φ = f(R, T, δ(p)): Φ(ps) – pd≠=≈ε 0→ Optimization C. Barillot, Visages U746, IRISA, Rennes
Basic Referential Image Referential
Instrumental Referential
Subject Referential
p(u,v,w) p(x,y,z) p(i,j,k)
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
18
May 08
Class of registration domains ONE patient ONE modality
Intra-modality registration : Post-operative control Pathology tracking, Treatment probing
SEVERAL modalities
Inter-modalities registration Complementarities between sources of images Computer assisted therapeutic planning Computer assisted surgery Anatomy-function correlation
SEVERAL patients patients Intra-modality registration Model-based segmentation Registration/matching with an anatomical atlas Spatial normalization, study of anatomical variability
Inter-modalities registration Human brain mapping Anatomo-functional normalization
C. Barillot, Visages U746, IRISA, Rennes
Medical Image Registration : Basic Concepts Definition: Definition Let Is and It be two images (source and target) to match, Ωs and Ωt, two homologous structures extracted from these images. The registration procedure consists in finding the transformation Φ : Ωs→ Ωt which registers a landmark ω in Ωs to its correspondent Φ(ω) in Ωt.
By generalization, this transformation can be applied to the underlying images Is and It : (It(x1, y1, z1) = Φ[Is(x2, y2, z2)]) For a given optimization method Ψ, the transformation Φθ∈Θ is computed by the optimization of :
argmin Δ (Φ θ ( Ω s)− Ω t ) (θ ∈Θ Ψ )
where Δ is the similarity measure and (θ∈Θ) the transformation parameters C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
19
May 08
Registration : The 4 basic stages
Definition of homologous structures (Ω)
Definition of the type of transformation (Φ)
Definition of the cost function (Δ)
Definition of the cost function optimization algorithm (Ψ)
C. Barillot, Visages U746, IRISA, Rennes
Types of Homologous Structures (Ω)
Size of the manifold (Dh)
0D 1D 2D 3D nD
: : : : :
point (Ω=Constant) contour (Ω=f(u)) surface (Ω=f(u,v)) volume (Ω=f(u,v,w)) hypersurface (Ω=f(u1,…,un))
Size of the evolution (Euclidian) space (Dw)
2D : surface, projection (Ω∈R2) 3D : discrete or continuous space (Ω∈R3) nD, nD+t : hypersurface, spatio-temporal (2D+t); (Ω∈Rn) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
20
May 08
Nature of Homologous Structures (Ω)
External Referential :
Fiducial markers Surgical frames (e.g. stereotactic)
Anatomical Referential :
Anatomical landmarks (reference structures) Image (iconic) features (gray levels, gradients, curvatures, ...) Segmented shape C. Barillot, Visages U746, IRISA, Rennes
Which Transformation (Φ) ?
Linear Transforms :
⎡ ⎡r11s1 r12 r13 ⎤ ⎢⎢ ⎥ r r s r 22 2 23 ⎥ ⎢ ⎢ 21 ⎢ ⎢⎣ r31 r32 r33 s3 ⎥⎦ ⎢ 0 0 ] ⎢⎣[ 0
⎡t x ⎤ ⎤ ⎢t ⎥ ⎥ ⎢ y ⎥⎥ ⎢⎣tz ⎥⎦ ⎥ ⎥ w ⎥⎦
Rigid Transformation (rotation + translation) Affine Transformation (rigid + scale) Projective Transformation (Ωs∈Rn → Ωd∈Rn-i, i>0)
Non-linear Transformation (dense):
δ: pd=ps+ δ(ps) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
21
May 08
Similarity Function (Δ) Definition: The similarity function defines the objective criteria (cost) used to estimate the quality of the registration between two homologous structures (Ω).
Three big classes of measures:
Methods based on the definition of an intrinsic geometry (frame, external landmarks, reference planes, …). Methods based on Euclidian criteria (distances, surfaces, volumes). Methods based on image intensities or their derivatives (correlation in the spatial or frequency domain, entropy, optical flow, …) C. Barillot, Visages U746, IRISA, Rennes
Intensities of the floating Image Y=Φ(X)
Image registration: Measure from joint histogram Joint Histogram (HIST[x,y])
Intensities of the reference image X
Registered Images (1/2*[X+Φ(X)])
Φ=Ι
Φ=Tx
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
22
May 08
Image registration:
Relation between the transformation and the joint histogram
C. Barillot, Visages U746, IRISA, Rennes
Joint Histogram: Linear or Affine Dependencies Optimum Corr(x,y) y=αx+β
Corr ( X , Y ) =
Cov( X , Y ) var( X ).var(Y )
Intensities of the floating Image Y=Φ(X)
Optimum SSD/SAD y=x SSD( X , Y ) = ∑ ( x − y ) 2
x∈ X , y∈Y
SAD( X , Y ) =
∑
x− y
x∈ X , y∈Y
Intensities of the reference image X
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
23
May 08
Joint Histogram:
Intensities of the floating Image Y=Φ(X)
Examples of Linear or Affine Dependencies
Joint Histogram (HIST[x,y])
Intensities of the reference image X
Registered Images (1/2*[X+Φ(X)])
Φ=Ι
Φ=Tx
C. Barillot, Visages U746, IRISA, Rennes
Joint Histogram:
Functional Dependencies (e.g. Correlation Ratio)
Intensities of the floating Image Y=Φ(X)
Joint Histogram (HIST[x,y])
Optimum η(Y|X) Y=f(X) Intensités de l’image référence
X
MRIMRI-T2
MRIMRI-PD
Intensities of the reference image X η (Y X ) = 1 −
var[Y − E (Y X )] var(Y )
X
Y
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
24
May 08
Joint Histogram:
Statistical Dependencies (e.g. Mutual Information)
Intensities of the floating Image Y=Φ(X)
Joint Histogram (HIST[x,y]) Optimum
MI(X,Y)
Intensités de l’image référence
X
CT
MRI
Intensities of the reference image X
MI(X,Y) = H(X) + H(Y) - H(X,Y) NMI(X,Y) = (H(X) + H(Y)) / H(X,Y)
X
Y
C. Barillot, Visages U746, IRISA, Rennes
Joint Histogram: Intensities of the floating Image Y=Φ(X)
Statistical Dependencies (e.g. Mutual Information) Optimum
MI(X,Y)
Φ=Ι
Joint Histogram (HIST[x,y])
Intensities of the reference image X
Φ=Tx=3mm
Φ=Tx=5mm
PET
X
MRI
Y
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
25
May 08
Optimization Issues (Ψ) Definition: Definition The optimization method defines how the cost function (Δ) will be minimized (or maximized) with respect to the set of transformation parameters θ∈Θ.
Δ
Cost Function Δ(θ)
A
G
C E
B D
Idea: Idea the goal is to find the minimal value (i.e. D rather than F) of Δ(θ) from any initialization point (e.g. G)
Z X
F
Transformation parameters (θ∈Θ)
Y
θ C. Barillot, Visages U746, IRISA, Rennes
Optimization Methods (Ψ)
Non Global optimization methods:
Quadratic or semi-quadratic approaches
May need the estimation of partial derivatives of Δ(θ).
Assume a quasi-convex energy around the desired solution Need a hierarchical resolution scheme (multiscale, multi-resolution) Examples:
Least square, ICP, Gradient Descent, Newton-Raphson, Levenberg-Marquardt, Simplex, Powell... C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
26
May 08
Optimization Methods (Ψ)
(2)
Global optimization methods:
More robust approaches (proof of convergence at an infinite state) Computational cost Non applicable to high dimensional problems (e.g.
iconic registration)
Examples:
Dynamic Programming, Simulated Annealing, Genetic Algorithms, Clustering Methods, Branch and Bound, Evolutionary Algorithms, Statistical Methods , ... C. Barillot, Visages U746, IRISA, Rennes
Semi-quadratic Optimization using NEWUOA
NEW Unconstrained Optimization Algorithm [Powell 04] 1.
2.
3.
4.
Compute a quadratic approximation of the function to optimize by using a set of initial points (parameters), typically (n+1)(n+2)/2 for a problem of dimension n Compute the maximum of the approximation within a “trust region” defined by the initial points Replace the “worst” parameter of the initial set with this newly estimated value and update the trust region Iterate C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
27
May 08
Illustration of NEWUOA optimization 1.4 1.4
f(x) f(x) Function samples final fit next interpolation point
1.2 1.2
11
Initial Region
Region Trust Trust Region
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00
-0.2 -0.2
-0.4 -0.4 -10 -10
-5 -5
00
55
10 10
C. Barillot, Visages U746, IRISA, Rennes
Validation and Error Measurement
BrainWeb dataset: T1-w, T2-w, PD-w images in perfect alignment 5% additive noise 50 random transformations (+/- 5 mm +/- 5 degrees) Warping Index [Thevenaz&Unser00] :
Paired t-tests
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
28
May 08
Results Comparison Table
Mutual information C. Barillot, Visages U746, IRISA, Rennes
Results Algorithm Accuracy
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
29
May 08
Results Algorithms Run Time
C. Barillot, Visages U746, IRISA, Rennes
Outcome from this study
Mutual Information
Best Similarity Measure for any of the optimizers
NEWUOA
Fastest Algorithm (compared to Powell or Simplex) Best Accuracy More Robust C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
30
May 08
Recalage Intra-Sujet Applications: • Approche générique basée «surface» •Recalage IRM/CT/PET •Recalage IRM/MEG •Recalage IRMa/3D-DSA • Recalage IRMf
C. Barillot, Visages U746, IRISA, Rennes
Multimodal Registration : Surface Matching Sx R11 R21
R13
0
Sy R22 R23
R12
0
R32 Sz R33 TY TZ
Surface Extraction
0 1
Binary Volume
.A .
P.C.A. P. C
Target Volume
Segmentation
R31 TX
Distance Volume Base Volume
Registered Volume
R12
R13
0
R21
Sy R22
R23
0
R31 TX
R32 TY
Sz R33 TZ
0 1
Sx R11
R12
R13
R21
Sy R22
R23
R31 TX
R21 R31 TX
R12
R13
Sy R22 R23 R32 Sz R33 TY TZ
0 0
R32 Sz R33 TY TZ
0 1
Sx R11
R12
R13
0
R21
Sy R22
R23
0
R31 TX
Sx R11
Multiresolution Processing
Sx R11
R32 Sz R33 TY TZ
0 1
0 0 0 1
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
31
May 08
Exemple de recalage multimodal
C. Barillot, Visages U746, IRISA, Rennes
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
32
May 08
Résultats de superpositions SPECT-IRM et PET-IRM
C. Barillot, Visages U746, IRISA, Rennes
Multimodal Registration: Evaluation
Blinded evaluation of retrospective image registration techniques NIH Multi-Groups Project (prime: J.M. Fitzpatrick, Univ.. Vanderbilt) Multimodal (CT, MR, PET), 5-7 clinical cases each Variable resolutions
CT: 512x512x(28-34) slices; 0.65x0.65x4 mm MR: T1, T2, PD; 256x256x(20-26) slices; 1.25x1.25x4 mm
10 brain anatomical structures for reference C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
33
May 08
Multimodal Registration: Evaluation Optic chiasm
(Source: [West J. et al., JCAT-21(4), 1997])
Junction of fourth ventricle with aqueduct Maximum aperture of fourth ventricle Whole head
4,00 3,00
Apex of left Sylvian fissure
T2 Optic chiasm
T1r
PD
0,00
Apex of right Sylvian fissure
Right occipital horn
1,00
Left occipital horn
2,00
Whole head
Error in mm
5,00
Left occipital horn Left globe Right globe Right occipital horn Junction of central sulcus with midline
Registration Error vs. Region of Interest (CT ↔ MRI)
C. Barillot, Visages U746, IRISA, Rennes
Multimodal Registration: Evaluation Volumetric Similarities
Point Simil. Simil.
SurfaceSurface-based Similarities
Error in mm
(Source: [West J. et al., JCAT-21(4), 1997])
10
T1 PD T2 T1 rect
8 6 4
PD rect T2 rect
2 0 1
2
3
4
5
6
7
8
9
10
11
Mean Registration Error CT-MR C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
34
May 08
Recalage multimodalité : Évaluation Similarité Similarités Volumé Volumétrique
Similarité Similarités Surfaciques
Simil. Simil. Point
> 30 Erreur in mm
25
T1
20
PD
15
T2 T1 rect
10
PD rect
5 0
T2 rect
1
2
3
4
5
6
7
8
9
10
11
Max Registration Error CT-MR (Source: [West J. et al., JCAT-21(4), 1997])
C. Barillot, Visages U746, IRISA, Rennes
Recalage IRM-MEG
Analyse Multirésolution Recalage Initial
Echantillonnage du « Headshape » Optimisation Rejet des points aberrants
Fin C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
35
May 08
Recalage IRM-MEG IRM Anatomique
Segmentation de la Tête
Acquisition du « Head Shape »
Recalage « Head Shpe » vs IRM
C. Barillot, Visages U746, IRISA, Rennes
Recalage MEG-IRM : Evaluation de la précision
Précision théorique sur simulations :
erreur moyenne de 3mm
Validation expérimentale
Comparaison avec la méthode manuelle (basée sur des amers cutanés) Utilisation Clinique Transfert technologique C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
36
May 08
Recalage MEG-IRM : Résultats
C. Barillot, Visages U746, IRISA, Rennes
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
37
May 08
Recalage Angiographie X 3D / IRM
3D DSA
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
38
May 08
Recalage Angiographie X 3D / IRM
Segmentation des vaisseaux
Détection des régions sulcales (courbures Lvv)
Minimisation de la distance entre les sillons et les vaisseaux
C. Barillot, Visages U746, IRISA, Rennes
Résultats
0 à 1mm 1 à 2mm 2 à 3mm 3 à 5mm > 5mm
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
39
May 08
Acquisition
Paradigme A
A R
R temps
Analyse de données en IRM fonctionnelle cérébrale Détection
moyenne activation A moyenne repos R
intensité
pixel temps C. Barillot, Visages U746, IRISA, Rennes
A
Tâche
R A R
A R temps
coupes sagittales
moyenne activation A
coupe sagittale
= moyenne repos R
image différence
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
40
May 08
IRMf: Mouvement du sujet -
moyenne repos R
moyenne activation A
image différence
C. Barillot, Visages U746, IRISA, Rennes
IRMf: Mouvement du sujet 1,5
décalage en x
1 0,5 0 -0,5
1 17 33 49 65 81 97 113
-1 1/10 pixel induit 1 à 7% de variation de signal C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
41
May 08
Exemple: Recalage monomodale par flot optique • Formulation gé générale : minimisation de la fonctionnelle de conservation de l’l’intensité intensité entre paires d’ d’images U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α 2
s∈S
∑ω
s , r ∈C
s
− ωr
2
• Introduction d’ d’estimateurs robustes
U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α ∑ ω s − ω2r s∈S U (ω , δ , β ; f ) = ∑ δ s (∇f (s, t )⋅ω s + s,fr t∈(Cs, t )) + ϕ1 (δ s ) + α 2
2
s∈S
∑β
s , r ∈C
sr
ωs − ωr
2
+ ϕ 2 (β sr )
• Approche multi ré résolution • Optimisation alterné alternée [1) estimation des poids δ, β et 2) estimation des paramè paramètres de transformation ω]
• Temps de calcul < 1s pour des volumes 643 C. Barillot, Visages U746, IRISA, Rennes
IRMf: Mouvement du sujet Activation
Image de différence sans correction
Image de différence avec correction
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
42
May 08
Deformable Registration
Deformable Registration: Not a new topic!
Classical topic in morphometry (e.g. [ D’Arcy Thomson, 1917]) (Source: D’Arcy Thomson, On Growth and Form, Cambridge University Press, 1961)
Classical topic for brain imaging (e.g. [Talairach et al., 1967])
(Source: J. Talairach, G. Szikla, P. Tournoux, A. Prosalentis, and M. Bornas-Ferrier, Atlas d'Anatomie Stéréotaxique du Télencéphale. Masson, Paris, 1967)
Introduction of computer based procedures in the 80’s (R. Bacjsy, C. Broit and coll.; U. Grenander and coll.; F. Bookstein, …) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
43
May 08
Deformable Registration: evolution in a decade* In IPMI (oral): [86-88] F. Bookstein (general morphometry, brain, TPS) [91]
F. Bookstein (general morphometry, brain, TPS) D. Lemoine et al. (brain, Talairach Grid System)
[93]
F. Bookstein et al. (general morphometry, brain, TPS) K. Shields et al. (carotid plaques in US)
[95]
G. Christensen et al. (brain, fluid model) L. Collins et al. (brain, atlas based segmentation) J. Gee et al. (brain, bayesian framework) S. Sandor et al. (brain, atlas based segmentation)
[97]
P. Edwards et al. (brain, interventional imaging) T. Schiemann et al. (volume interaction)
[99]
A. Caunce et al. (sulci shape model) G. Christensen et al. (brain, homomorphism) H. Chui et al. (brain cortical point) L. Collins et al. (brain, atlas based segmentation) H. Lester et al. (brain, fluid model) D. Rey et al. (brain, growth of pathologies) K. Rohr et al. (TPS) O. Skrinjar et al. (brain, interventional imaging) M. Vaillant et al. (brain cortical surface)
* data collected from IPMI (Information Processing in Medical Imaging) C. Barillot, Visages U746, IRISA, Rennes
Deformable registration: When? ONE modality
ONE patient Registration of temporal sequences : Temporal deformation of anatomical structures (heart, chest, blood flow)
Growth, Pathologies follow-up
SEVERAL modalities
Correction of fMRI acquisitions Constraints to reconstruction / restoration algorithms Computer Assisted Surgery registration between preand intra-operative images
SEVERAL patients patients Model-based segmentation Building of digital atlases Registration/matching with an anatomical atlas Spatial normalization, study of anatomical variability Human brain mapping Anatomo-functional normalization (aid for the study of functional variability)
(e.g. MRI and Ultrasound) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
44
May 08
Deformable Registration : which transformation?
Non-linear dense transformation: Definition : The transformation can be represented as a dense deformation field: a displacement vector δ is associated to each point of the homologous structures Ωs and Ωt :
δ: pt=ps+ δ(ps)
In an energetic framework, the general formulation becomes:
argmin
(θ ∈ Θ Ψ )
In a Bayesian context:
E [Δ ( p s + δ θ ( p s ), p t )]+ E [δ θ ] Likelihood : p((p (pss, pptt)|)|δ)
Prior : p(δ)
C. Barillot, Visages U746, IRISA, Rennes
Continuity of the transformation (E[δθθ])
Piecewise linear (C0 continuity)
Parametric (C1, C2 continuity)
(e.g. Talairach)
(e.g. Splines, Free-form
deformation, Cosines, RBF)
Physics-inspired Models (e.g. mechanical) :
Linear elasticity models (Navier equations )
Fluid models (Navier-Stokes equations )
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
45
May 08
Inversibility of the transformation
The transformation h must be an homeomorphism, that means :
The target volume V is convex (closed and bounded) h must be C1 continuous The jacobien of h : J(h) > 0 h must be invertible and h-1 continuous If h is C1 and J(h) > 0, then h is locally injective
In practice to enforce the homeomorphism is difficult Î people tend to rich the symmetry property only C. Barillot, Visages U746, IRISA, Rennes
Symmetry of the transformation
The transformation h is considered as a symmetric transformation between a source S and a target T, when :
h : S(x)ÆT(x); g: T(x) Æ S(x) h(x)°g(x)=h(g(x))=x Methods iteratively minimize
∑ [h( g ( x)) − x]
2
x∈V
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
46
May 08
Defomable Registration: Local and Global approaches
Global, or “photometric” methods (Dh= Dw)
Local, or “geometric” methods (Dh< Dw)
Rely on photometric similarity measures Provide a dense deformation field Anatomical coherence of the transformation? _ High dimensional optimization problem
Rely on extracted features (point, curves, surfaces)
Interpolation necessary (e.g. thin-plate-spline, RBF, …)
The transformation is mostly relevant in the neighborhood of the homologous features
¾ Hybrid: Hybrid: use of both homologous structures C. Barillot, Visages U746, IRISA, Rennes
Image fusion in neuroimaging using Global, Local and Hybrid methods
Subjects Data Base
Probability of Activation Y Statistical Model of Sulcus X
Segmented Sulci
Registered Sulci
Probability of Sulcus X
Local Registration Hybrid Matching to Reference Sulcus and Brain
Probability of Sulcus X
+
Probability of Activation Y
Hybrid Registration Probability of Sulcus X
Dense Matching to Reference Brain
Probability of Activation Y
Global Registration
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
47
May 08
Example of Inter-Individual Registration
C. Barillot, Visages U746, IRISA, Rennes
Deformable Registration: Local, or “geometric” methods Definition of local landmarks
Before registration
Averaging of 9 brains
Definition of a deformation model
After deformable registration
(Source: F. L. Bookstein, Thin-plate splins and the atlas problem for biomedical images, IPMI, Wye College, UK, 1991)
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
48
May 08
Talairach Stereotactic Proportional Grid System
(Source: J. Talairach, G. Szikla, P. Tournoux, A. Prosalentis, and M. Bornas-Ferrier, Atlas d'Anatomie Stéréotaxique du Télencéphale, Masson, Paris, 1967) C. Barillot, Visages U746, IRISA, Rennes
Probabilistic atlas based on local constraints Cortical Sulci
InterInter-subjects registration of sparse data (MEG) local referential non-linear local registration non-linear global registration
x0
xi
xm wu v
Statistical Shape Analysis X = Sillon moyen
m
∑ xi i =1
C=
∑ φi bi
⎡ ui ⎢v ⎢ i ⎢wi ⎢ ⎢⎣ t x
m
1 ∑ ~xi ~xi T ; ~xi = xi − X m i =1
C = Φ ΛΦ ; Λ T
Analysis
x = X + Φb m
x≈ X +
1 m
Sulcus Mean Shape
Reconstructed Sulcus
n
i=1
Constraints on TPS
f (x , y , z ) = a 0 + a 1x + a 2 y + a 3z + ∑ w iU (| Pi − (x , y , z ) |) , U(r) = r
wu v
⎡ λ1 = ⎢⎢ M ⎢⎣ 0
uj
uk
vj wj
vk wk
ty
tz
0⎤ 0⎥⎥ 0⎥ ⎥ 1⎥⎦
wv
u
0 ⎤ O M ⎥⎥ L λm ⎦⎥ L
Modal Amplitudes Modes Matrix
Modal Analysis
Synthesis
i =1
x = X + φ 1b1
[
b1 ∈ − 2 λ1 , + 2 λ1
]
principal Mode of deformation of the right central sulcus
Ex. 29 subjects
Registration and matching
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
49
May 08
Extraction of the local features
C. Barillot, Visages U746, IRISA, Rennes
Linear Local Registration (LR) local referential
x0
xi
xm wu v
wu v
⎡ ui ⎢ ⎢ vi ⎢ wi ⎢ ⎢⎣ t x
uj vj wj ty
uk vk wk tz
0⎤ 0 ⎥⎥ 0⎥ ⎥ 1 ⎥⎦
w v u
29 subjects
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
50
May 08
Statistical Shape Model :
Principal Component Analysis 1 m X = ∑ xi m i =1
Reconstructed Shape
Mean sulcus
29 subjects
Mean Shape
m
∑ ~xi ~xi T ; ~xi = xi − X
1 m
i =1
⎡ λ1
C = Φ Λ Φ T ; Λ = ⎢⎢ M ⎢0 Analysis ⎣
x = X + Φb
L O L
0 ⎤ M ⎥⎥
λm ⎥⎦
Modal Amplitudes Modes Matrix
Synthesis
m
x≈ X +
C=
∑ φi bi i =1
x = X + φ 1b1
[
b1 ∈ − 2 λ1 ,+ 2 λ1
]
principal Mode of deformation of the right central sulcus
C. Barillot, Visages U746, IRISA, Rennes
Non-Linear Local Registration (NLL): Use of thin plate splines
f : interpolation n source points Pi
n target points Vi
x Source: left central S. of one subject
function
(W a
0
a1
a2
a3 )
i =1
x = x + Φ mbm application
x Target: mean central sulcus
n
f ( x, y, z ) = a0 + a1 x + a2 y + a3 z + ∑ wiU (| Pi − ( x, y, z ) |)
(x, y, z)
f
to a dipole Local extension of the deformation field
f(x, y, z)
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
51
May 08
Somatotopy around the principal mode using the non -linear local method (NLL) non-linear Little finger
Index
Thumb
C. Barillot, Visages U746, IRISA, Rennes
Deformable Registration: Global, iconic or photometric methods Find a the transformation between one reference (atlas) and one individual Model 1 Source
Target
Transformed Deformation Image Field
Model 2 C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
52
May 08
Adaptive Non Rigid Registration: ©) Using optical flow and robust estimators (RoMEO©
General formulation (optical flow estimation): U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α 2
s∈S
Robust estimation of the deformation field :
Ö
Reduce the sensitivity to noise and preserve the deformation discontinuities: U (ω , δ , β ; f ) = ∑ δ (∇f (s, t )⋅ ω + f (s, t )) + ϕ (δ ) + α ∑ β ω − ω
s
Adaptative multigrid algorithm:
s
t
1
s
s , r ∈C
Pyramide multiré multirésolution
sr
s
s , r ∈C
2
2
s∈S
∑ω
r
s
− ωr
2
+ ϕ 2 (β sr )
Minimisation multigrille
Ö Extensible to other similarity similarity
functions (e.g. (e.g. fMRI registration): registration):
C. Barillot, Visages U746, IRISA, Rennes
Registration between 2 subjects
Deformable Registration: Multiresolution optimization
Intensity RMS
Init after resolution 1
Grid 4 Grid 3 Grid 2
10
20
30
40
Grid 1 Grid 0 50
60
70
CPU time (mn (mn))
Multiresolution Pyramid
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
53
May 08
RoMEO ©
Talairach
Affine
Deformable Registration : Spatial Normalization
Target
Averaging of 18 subjects
C. Barillot, Visages U746, IRISA, Rennes
Hybrid Approach
Christian BARILLOT, Visages Team, IRISA, Rennes, France
54
May 08
Hybrid approach:
Cooperation between local and global approaches
Global, or “photometric” method:
Image registration based on image information Provides a dense deformation field
Local, or “geometric” method:
Rely on landmarks (points, surfaces, …) Use an interpolation function (e.g. TPS) Cooperative approach, where geometric and photometric information are combined into the same framework
C. Barillot, Visages U746, IRISA, Rennes
Hybrid deformable registration : Introduction of sparse constraints (JULIET©)
Creation of a constraints field (ωc) :flow) : Use of global (e.g. optical
Matching
of homologous structures (e.g. sulci )
Mean without constraints
Taking
into account possible interruptions between sulci Mean with constraints
Reference Subject C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
55
May 08
Deformed central sulci (from 18 sujects) Without constraints
With constraints
Mean sulci ()
C. Barillot, Visages U746, IRISA, Rennes
Visualization of the cortical deformation with constraints
without constraints
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
56
May 08
Cooperation between Segmentation and Registration Tasks
Cooperative scheme for Data Fusion Multimodal Registration
Original
Registered Data
Segmentation
Data
Segmented Data
Modeling
Modeled Data
Deformable Registration
a priori Knowledge
Information Model
a posteriori Knowledge
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
57
May 08
Deformable Registration and Segmentation
Atlas Based Segmentation
Expert Segmentation
Atlas (Source: [Collins et al, IPMI’95])
Deformable Registration
Deformable Registration + Level Sets (simulation)
Deformable Registration
Deformable Registration + Level Sets (real data)
C. Barillot, Visages U746, IRISA, Rennes
Model-Guided Segmentation and Labeling: Integration of fuzzy control and level sets*
Objective : Segmentation of brain structures close, with similar intensities and hardly defined contours Method :
Statistical analysis of shape and localization of structures Concurrent evolution of several level sets
Contribution :
Integration of fuzzy control to constrain the competitive evolution of level sets Utilization of a statistical shape models to define the fuzzy control variables *: C. Ciofolo, C. Barillot, IPMIC.2005, 2006IRISA, Rennes Barillot,ECCV Visages U746,
Christian BARILLOT, Visages Team, IRISA, Rennes, France
58
May 08
Deformable Registration:
Study of the Anatomical Variability
(Source: MNI, U. McGill, Montreal )
Probabilities of cortical labels (max proba)
Probabilities for Sulci Occurrence (> 10%) C. Barillot, Visages U746, IRISA, Rennes
Deformable Registration: Labelling from atlas Sulci Labeling
(Source: [LeGoulher et al., 2000] )
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
59
May 08
Application of Deformable Registration in Clinical Neuroscience
Rigid registration of intra-operative 3D free-hand ultrasound with MRI
Objective: Construct probability maps of hyperechogenic structures from MRI and Ultrasound images for registration. Principal: Find a function f relating the MRI intensity of a voxel X (u(X)) with its probability to be included in the set of hyperechogenic structures: Before
*: P. Coupe et al.,IEEE-ISBI 2007
Christian BARILLOT, Visages Team, IRISA, Rennes, France
After
C. Barillot, Visages U746, IRISA, Rennes
60
May 08
Non-rigid registration of intra-operative 3D free-hand ultrasound with MRI
Objective: Compensate for the intraoperative deformations after opening of brain envelopes
Results
Validation on a synthetic deformation
Experimentation on 5 patients
Method:
Non rigid transformation using a multi-frequential approach (cosines basis defined from their pulsation ) mean estimated deformation 2.71 +/+/- 1.03 mm
Use the joint probability between hyperechogenic structures and liquid interfaces in MRI
mean estimated deformation 1.81 +/+/- 1.02 mm
[P. Coupe et al., Patent]
C. Barillot, Visages U746, IRISA, Rennes
Medical Image Computing in Neurological Diseases: Voxel based morphometry in Parkinsonian disorders*
Objective
Differentiate between Parkinson’s Disease (PD) and MSA (Multiple Systems Atrophy) and PSP (Progressive Supranuclear Palsy) symptoms (current : 66% TP) Early diagnosis from crosssectional MRI at a single time point at inclusion
Result
Only 20 patient from each group 90% differential diagnosis PD vs MSA/PSP Error rate cut by 50%
Exemples of MSA Normal
*: S. Duchesne et al., SPIE 2007
Christian BARILLOT, Visages Team, IRISA, Rennes, France
Mild
Severe
C. Barillot, Visages U746, IRISA, Rennes
61
May 08
Surface based morphometry in Parkinsonian disorders Cortical Feature Population Average Maps
Objective:
Differentiation between Parkinson’s Disorders Early diagnosis from crosssectional MRI at a single time point at inclusion
Method
Extraction of GM/WM interface
Computation of cortical indexes cortical gray matter thickness
Results:
Sulcal each Depth group Only 20 patient from
Brain
Mapping of statistical difference between groups
Curvature
Cortical Thickness
geodesic sulcal depth
Cortical Feature Significant Mean Difference Maps Red/ Red/Yellow: Yellow: IPD > MSA, IPD > PSP, MSA> PSP Blue/ Blue/Cyan: Cyan: MSA>IPD, PSP>IPD, PSP>MSA
[D. Tosun et al., Miccai’07]
C. Barillot, Visages U746, IRISA, Rennes
Data Fusion of Anatomical and Functional Brain Images
Christian BARILLOT, Visages Team, IRISA, Rennes, France
62
May 08
Deformable Registration for Anatomo-Functional Imaging Talairach Atlas
MEG Localisations
C. Barillot, Visages U746, IRISA, Rennes
Spatial Normalization for the Analysis of Functional Data Example of comparison of average activation responses Linear Registration
NonNon-Linear Registration
Illustrations courtesy from J.C. Gee, GRASP Lab., Univ. of Pennsylvania
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
63
May 08
Mapping of the somatotopy using global and hybrid deformable registration methods
Mutual Inf. Method (M)
Romeo Method (R)
SPM Method (S)
Talairach Method (P)
Juliet Method (H)
Gaussian Ellipsoid at 3σ for 15 subjects C. Barillot, Visages U746, IRISA, Rennes
Comparative Somatotopy : local method vs hybrid method Juliet (hybrid deformable registration method)
NonNon-Linear Local deformable registration method
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
64
May 08
Deformable Registration : Limits
In General
Segmentation/Labeling
Validation/Generality of methods Labeling of highly variable structures (e.g. marginal cortical sulci )
Atlas matching methods using global approaches
Barely efficient on cortical anatomy Source dependent Not yet real-time
C. Barillot, Visages U746, IRISA, Rennes
Non Linear
Linear
Deformable Registration: Limits
Simulation
Real Data
(10 Subjects)
(Source: [Collins et al., 1996] ) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
65
May 08
Deformable Registration:
International project for evaluation of non-rigid registration
Affine
U. McGill
Talairach
SPM
Target
Anatomical and functional validity of the registration On the same corpus (18 subjects)
Others Participants:
U. Iowa
Aim of the study
IRISA
Epidaure
U. McGill (L. Collins), Epidaure Project INRIA, U. Iowa (G. Christensen), SPM, (J. Ashburner)
Criteria
Anatomically meaningful Local and global measures Not related to the similarity used to perform the registration C. Barillot, Visages U746, IRISA, Rennes
6 major sulci per hemisphere
Local Criteria on sulcal matching (highly variable) Use of cortical sulci (anatomical (anatomical and functional landmarks) landmarks) Visualization of overlapping deformed left central sulci
(performed also on superior frontal and on lateral sulci)
MI
An
PS
De
RM
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
66
May 08
Perspectives
Data Fusion and Registration Perspectives
Needs to take into account local and global constraints in the deformable registration process (hybrid registration) More concerns about the clinical practice
pre-surgical mapping intra-operative and real time imaging Cope with missing tissues (registration of dissipative material)
Introduction to the statistics of transformations (in a tangent
space)
Introduction of statistical information for the guidance of the deformation
Registration of vector and tensor fields Tighter links between registration and segmentation (e.g. thru active surface formulation) C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
67
May 08
Some references : Thesis or Books on data fusion and registration, and on general aspects 1.
2.
3.
4.
5.
6.
7.
Barillot, C. (1999). “Fusion de données et imagerie 3D en médecine,” Habilitation à diriger des recherches, University of Rennes 1, Rennes. ftp://ftp.irisa.fr/techreports/habilitations/barillot.pdf Corouge, I. (2003). “Modélisation statistique de formes en imagerie cérébrale.” PhD, Univ. Rennes I, Rennes. ftp://ftp.irisa.fr/techreports/theses/2003/corouge.pdf Corouge, I., Hellier, P., and Barillot, C. (2005). “From Global to Local Approaches for Non-Rigid Registration.” Medical Imaging Systems Technology: Methods in General Anatomy, vol. 265, C. T. Leondes Ed., Singapore, World Scientific Publishing. Hellier, P. (2000). “Recalage non rigide en imagerie cérébrale: méthodes et validation,” PhdThesis, Université de Rennes1. ftp://ftp.irisa.fr/techreports/theses/2000/hellier.pdf Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn, Cambridge University Press, Cambridge. http://www.nr.com/ Van Bemmel, J. H., and Musen, M. A. (1997). Handbook of medical informatics, Springer, URL: http://www.mieur.nl/mihandbook . Viola, P. A. (1995). “Alignment by Maximization of Mutual Information,” Ph.D. Thesis, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA. C. Barillot, Visages U746, IRISA, Rennes
Review Papers 1.
2.
3. 4.
5.
Barillot, C. (1993). “Basic Principles of Surface and Volume Rendering Techniques to Display 3D Medical Data.” IEEE Engineering in Medecine and Biology, 12(1), 111-119. Brown, L. F. (1992). “A survey of image registration techniques.” ACM Computing Surveys, 24(4), 325-376. Gee, J. C. (1999). “On matching brain volumes.” Pattern Recognition, 32(1), 99-112. Lester, H., and Arridge, S. R. (1999). “A survey of hierarchical non-linear medical image registration.” Pattern Recognition, 32(1), 129-149. Maintz, J., and Viergever, M. (1998). “A survey of medical image registration.” Medical
Image Analysis, 2(1), 1-36. 6.
7.
8.
Maurer, C., and Fitzpatrick, J. (1993). “A review of medical image registration.” Interactive image guided neurosurgery, American association of neurological surgeons, pp.17-44. McInerney, T., and Terzopoulos, D. (1996). “Deformable models in medical image analysis: a survey.” Medical Image Analysis, 1(2), 91-108. Zitova, B., and Flusser, J. (2003). “Image registration methods: a survey.” Image and Vision Computing, 21(11), 977-1000. C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
68
May 08
Research Papers on deformable registration (1) 1.
2.
3.
4.
5.
6.
7.
8.
Ashburner, J., and Friston, K. J. (1999). “Nonlinear Spatial Normalization Using Basis Functions.” Human Brain Mapping, 7(4), 254-266. Bajcsy, R., and Kovacic, S. (1989). “Multiresolution Elastic Matching.” Computer Vision Graphics and Image Processing, 46, 1-21. Bookstein, F. (1989). “Principal Warps: Thin plate splines and the decomposition of deformations.” IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(6), 567-585. Christensen, G., Rabbit, R., and Miller, M. (1996). “Deformable templates using large deformation kinematics.” IEEE trans image processing, 5(10), 1435-1447. Christensen, G. E., and Johnson, H. J. (2001). “Consistent image registration.” IEEE Transactions on Medical Imaging, 20(7), 568 - 582. Collins, L., and Evans, A. (1997). “Animal: validation and applications of nonlinear registration-based segmentation.” International Journal of Pattern Recognition and Artificial Intelligence, 8(11), 12711294. Collins, L., Le Goualher, G., Venugopal, R., Caramanos, A., Evans, A., and Barillot, C. (1996). “Cortical constraints for non-linear cortical registration.” Proc. Visu. in Biomed. Computing, LNSC, K. Hohne and R. Kikinis, Eds., Springer, pp.307-316. Corouge, I., Dojat, M., and Barillot, C. (2004). “Statistical shape modeling of low level visual area borders.” Medical Image Analysis, 8(3), 353-360. C. Barillot, Visages U746, IRISA, Rennes
Research Papers on deformable registration (2) 1.
2.
3.
4.
5.
6.
7.
8.
Corouge, I., Hellier, P., Gibaud, B., and Barillot, C. (2003). “Interindividual functional mapping: a nonlinear local approach.” NeuroImage, 19(4), 1337-1348. Friston, K., Ashburner, J., Frith, C., Poline, J., Heather, J., and Frackowiak, R. (1995). “Spatial registration and normalisation of images.” Human Brain Mapping, 2, 165-189. Gee, J. C., le Bricquer, L., and Barillot, C. (1995). “Probabilistic matching of brain images.” Information Processing in Medical Imaging, Y. Bizais, C. Barillot, and R. di Paola Eds., Dordrecht., Kluwer Academic Publishers, pp.113-125. Hellier, P., Ashburner, J., Corouge, I., Barillot, C., and Friston, K. J. (2002). “Inter subject registration of functional and anatomical data using SPM.” in Lecture Notes in Computer Sciences: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002, vol. LNCS-2489, R. Kikinis, R. Ellis, and T. Dohi Eds., Tokyo, Springer-Verlag, pp.590-587. Hellier, P., and Barillot, C. (2003). “Coupling dense and landmark-based approaches for non rigid registration.” IEEE Transactions on Medical Imaging, 22(2), 217-227. Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins, D. L., Evans, A., Malandain, G., Ayache, N., Christensen, G. E., and Johnson, J. H. (2003). “Retrospective Evaluation of Intersubject Brain Registration.” IEEE Transactions on Medical Imaging, 22(9), 1120-1130. Hellier, P., Barillot, C., Mémin, E., and Pérez, P. (2001). “Hierarchical estimation of a dense deformation field for 3D robust registration.” IEEE Transactions on Medical Imaging, 20(5), 388-402. Le Goualher, G., Argenti, A.-M., Duyme, M., Baaré, W. F. C., Hulshoff Pol, H. E., Boomsma, D. I., Zouaoui, A., Barillot, C., and Evans, A. C. (2000). “Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape.” Neuroimage, 11(5), 564-574. C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
69
May 08
Research Papers on deformable registration (3) 1.
2.
3.
4.
5.
6.
7.
Le Goualher, G., Barillot, C., and Bizais, Y. (1997). “Modeling cortical sulci with active ribbons.” International Journal of Pattern Recognition and Artificial Intelligence, 8(11), 1295-1315. Le Goualher, G., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., and Evans, A. C. (1999). “Automated Extraction and Variability Analysis of Sulcal Neuroanatomy.” IEEE Transactions on Medical Imaging, 18(3), 206-217. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. (1997). “Multimodality image registration by maximisation of mutual information.” IEEE transactions on Medical Imaging, 16(2), 187-198. Miller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. (1993). “Mathematical textbook of deformable neuroanatomies.” Proc Natl Acad Sci U S A, 90(24), 11944-8. Thirion, J.-P. (1998). “Image matching as a diffusion process: an analogy with {Maxwell's} demons.” Medical Image Analysis, 2(3), 243-260. van den Elsen, P. A., Pol, E. J. D., and Viergever, M. A. (1993). “Medical image matching--a review with classification.” IEEE Engineering in Medicine and Biology Magazine, 12(1), 26-39. West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Maurer, C. R., Kessler, R. M., Maciunas, R. J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P. A., Napel, S., Sumanaweera, T. S., Harkness, B., Hemler, P. F., Hill, D. L. G., Hawkes, D. J., Studholme, C., Maintz, J. B. A., Viergever, M. A., Malandain, G., Pennec, X., Noz, M. E., Maguire, G. Q., Pollack, M., Pellizzari, C. A., Robb, R. A., Hanson, D., and Woods, R. (1997). “Comparison and Evaluation of Retrospective Intermodality Brain Image Registration Techniques.” J. Computer Assisted Tomography, 21(4), 554-566. C. Barillot, Visages U746, IRISA, Rennes
Research Papers on deformable registration (4)
Mazziotta, J., Toga, A., Evans, A., Fox, P., and Lancaster, J. (1995). “A probabilistic atlas of the human brain: theory and rationale for its development.” Neuroimage, 2, 89-101. McInerney, T., and Terzopoulos, D. (1996). “Deformable models in medical image analysis: a survey.” Medical Image Analysis, 1(2), 91-108. Miller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. (1993). “Mathematical textbook of deformable neuroanatomies.” Proc Natl Acad Sci U S A, 90(24), 11944-8. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn, Cambridge University Press, Cambridge. Thirion, J.-P. (1998). “Image matching as a diffusion process: an analogy with {Maxwell's} demons.” Medical Image Analysis, 2(3), 243-260. Van Bemmel, J. H., and Musen, M. A. (1997). Handbook of medical informatics, Springer, URL: http://www.mieur.nl/mihandbook. van den Elsen, P. A., Pol, E. J. D., and Viergever, M. A. (1993). “Medical image matching--a review with classification.” IEEE Engineering in Medicine and Biology Magazine, 12(1), 26-39. Viola, P. A. (1995). “Alignment by Maximization of Mutual Information,” Ph.D. Thesis, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA. West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Maurer, C. R., Kessler, R. M., Maciunas, R. J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P. A., Napel, S., Sumanaweera, T. S., Harkness, B., Hemler, P. F., Hill, D. L. G., Hawkes, D. J., Studholme, C., Maintz, J. B. A., Viergever, M. A., Malandain, G., Pennec, X., Noz, M. E., Maguire, G. Q., Pollack, M., Pellizzari, C. A., Robb, R. A., Hanson, D., and Woods, R. (1997). “Comparison and Evaluation of Retrospective Intermodality Brain Image Registration Techniques.” J. Computer Assisted Tomography, 21(4), 554-566. C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
70
May 08
Other related research paper 1.
Beauchemin, S. S., and Barron, J. L. (1995). “The Computation of Optical Flow.” ACM
Computing Surveys, 27(3), 433-467. 2.
3.
Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., and Evans, A. C. (1998). “Design and Construction of a Realistic Digital Brain Phantom.” IEEE Transactions on Medical Imaging, 17(3), 463-468. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). “Active Shape Models - their training and application.” Computer Vision and Image Understanding, 61(1), 38-59.
C. Barillot, Visages U746, IRISA, Rennes
Christian BARILLOT, Visages Team, IRISA, Rennes, France
71