Medical Image Registration - MIV

Christian BARILLOT, Visages Team,. IRISA, Rennes, France. 1. Medical Image Registration: Data Fusion in 3D Medical Imaging. Medical Image Registration...

5 downloads 1062 Views 5MB Size
May 08

Medical Image Registration: Data Fusion in 3D Medical Imaging

Christian Barillot CNRS Director of Research VisAGeS U746 Unit/Project, INRIA/INSERM IRISA, UMR CNRS 6074 Campus de Beaulieu 35042 Rennes Cedex, FRANCE [email protected] http://www.irisa.fr/visages

Plan „ „ „ „

General Context Illustration of Data Fusion Issues Principal of Data Fusion in 3D Medical Imaging Image Registration „ „

Basic Concepts A Focus on Deformable Registration „

„ „

Local, Global and Hybrid methods

Cooperation between segmentation and registration tasks Perspectives „ „

Deformable registration Sharing heterogeneous and distributed resources C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

1

May 08

General Context and Challenges „

„

„

„

1 GB

Context :

Molecular Biology /

Expansion of the quantity of data produced and processed in medical imaging (« from the volume to the mass ») Explosion of the IST and the electronic communication resources

Challenges : „

„

DTDT-MRI

0,5 MB

2D CT

3D CT

70's

3D PET SPECT

fMRI

3D MRI

80's

90's

2000's

2010's

To guide the clinician (e.g. a neurologist) within the mass of information to integrate into the medical decision process

► MS lesions 12000 images*/patient/year

To guide the surgeon for the exploitation of the different sensors and effectors (e.g. robots) to use in the interventional theater

► Epilepsy surgery 7000 images*/intervention *: 1 image = 1 2D MRI slice

C. Barillot, Visages U746, IRISA, Rennes

Coming issues „

To conceive the surgical room of the future „

„

„

To better understand the healthy and pathological states of organs at different scales (human physiome) „ „

„

Intra-operative multimodal sensors & effectors (e.g. robots) at macro, micro and nano scales To manage the sources of information from observation & knowledge

Imagery of pathologies : from the gross organ to the molecule Modeling healthy and pathological group of individuals from selected image descriptors (computational anatomy and function)

To connect people and medical resources thru high band networks and pooling of information sources for: „ „ „

Discovering unlikely events Data mining and knowledge discovery Validation and certification of new drugs

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

2

May 08

Research issues „

Need to interconnect medical information resources (data, programs, medical devices) together: „ „

„

Data fusion of medical images Merge semantic and computational Grid technologies Development of new adaptive medical devices (effectors, sensors, …) C. Barillot, Visages U746, IRISA, Rennes

Illustration of Data Fusion Issues

Christian BARILLOT, Visages Team, IRISA, Rennes, France

3

May 08

Epilepsy Surgery Patient selection Semiology of crisis and relations to anatomy « Static » Exams (search of lesions) « Dynamic » Exams (search of epileptogenic status): ¾ ¾

Interictal : functional imaging, Electrodes Implant Ictal : Crisis Recordings and labeling

Presurgical Planning Cortectomy (surgery) C. Barillot, Visages U746, IRISA, Rennes

Integration of metabolic and functional imaging for presurgical mapping EEG

MEG

SPECT Inter-ictal

Ictal

Spatial Resolution (mm)

10 Inter-ictal Spikes in Epilepsy

8

Cerebral Perfusion

FDG-PET

6 4 2

inter-ictal Metabolism of glucose

Reference

intra-cerebral Electrodes

1 ms

Anatomic MRI

fMRI

1 second

40 seconds

static

Temporal Resolution C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

4

May 08

Magnetic Resonance Imaging (MRI) Proton Density - NMR ¾ 256

x 256 pixels (1mm resolution)

¾ From

20 to 120 slices along three

axis

C. Barillot, Visages U746, IRISA, Rennes

» Exams

(Source: [A. Biraben et al., CHU Rennes])

« Static

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

5

May 08

Single Photon Emission Computed Tomography (SPECT) Distribution of a radio tracer ¾ Typical

64 x 64 à 128 x 128 pixels (resolution 3 to 5mm)

¾ 64

to 128 slices per volume

C. Barillot, Visages U746, IRISA, Rennes

«Dynamic» Metabolic Exams

(Source: [A. Biraben et al., CHU Rennes])

Extended temporal hypo metabolism

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

6

May 08

Fusion of “Static” and «Dynamic» Exams MRI +interictal +interictal SPECT (HMPAO)

Brain MRI + ictal SPECT

C. Barillot, Visages U746, IRISA, Rennes

Intra cerebral electrodes implant in stereotactic conditions MRI

Angiography 3D - 2D Projections

Registration of 3D referential stereotactic referential

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

7

May 08

Intra cerebral electrodes recordings

C. Barillot, Visages U746, IRISA, Rennes

Dynamic Exams and Pre-operative Planning:

MEG Signals

Functional recording of epileptic region environment

MEG Recordingd C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

8

May 08

Functional Imaging :

MagnetoEncephaloGraphy (MEG) Measure of the magnetic field issued by the neuronal activity : : 10-13 Tesla : 10-3 Tesla ¾ MRI : 1 to 3++ Tesla ¾ Brain

¾ Hearth

40 to 150+ sensors (SQUID) spontaneous and evoked potentials, e.g.: ¾ motor ¾ somesthesic ¾ language ¾ visual

C. Barillot, Visages U746, IRISA, Rennes

MEG : Spatiotemporal

Probabilité Probabilités

analysis of Spatio-temporal MEG analysis of interictal spikes

interictal spikes

[Source : D.P. Schwartz, et al., Neuroimage:Functional Mapping of the Human Brain, 7(4):S466, 1998]

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

9

May 08

MEG : Spatiotemporal Interictal Analysis Localization

100 ms

0 ms

Left Hemisphere

C. Barillot, Visages U746, IRISA, Rennes

Epilepsy Surgery : Preoperative Planning

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

10

May 08

Talairach Atlas

C. Barillot, Visages U746, IRISA, Rennes

Functional Mapping of language areas

Silent vs Active Word Activation

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

11

May 08

C. Barillot, Visages U746, IRISA, Rennes

Preoperative Planning :

functional MRI (fMRI)

Paradigm

Acquisition

A

A R

R time

mean of activation A Mean of rest state R intensity

Detection

pixel time C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

12

May 08

Epilepsy Surgery:

Superposition of graphical data

C. Barillot, Visages U746, IRISA, Rennes

Image Guided Surgery

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

13

May 08

Image-Guided Neurosurgery:

Interventional procedure (Neuronavigation) 3D referential system

3D workstation

Surgical Microscope 3D localizer

Patient

C. Barillot, Visages U746, IRISA, Rennes

Surgical resection

Electrodes landmarks

Resection C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

14

May 08

Evolution in Computer assisted surgery Integration of new models and observations „ „

Integration of new preoperative images (e.g. DT-MRI) Fusion between multimodal pre-operative images with intra-operative images to adapt the planning “in real time” for taking into account intra-operative deformations (e.g. brain shift)

2.5D Image

3D US Imagery

Courtesy I. Corouge, UNC

Preoperative Imagery

IntraIntra-operative Imagery

Fusion of observations C. Barillot, Visages U746, IRISA, Rennes

Cooperative Scheme for Data Fusion Multimodal Registration

Original

Registered Data

Segmentation

Data

Segmented Data

Modeling

Modeled Data

Deformable Registration

a priori Knowledge

Information Model

a posteriori Knowledge

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

15

May 08

Intra-Individual Data Fusion MRI

2D/3D Angiography

EEG/SEEG

Anatomical and Functional Imagery SPECT

CT

PET

MEG

fMRI

Segmentation and Labeling

Multimodal Registration Anatomical Landmarks Instrumental Referential Fiducial Markers

Contours Regions Deformable Models

Linear Transformations

Anatomical Labels

3D Visualization/Interaction Subject Data Base

• Multi-Objects/Volumes Visual. •Graphic/Voxels Visual. •Interactive Labeling

Inter-Individual Fusion

C. Barillot, Visages U746, IRISA, Rennes

Subject i

Subject n

Data Base

Data Base

Deformation Model

Affine

Higher Order

3D Numerical Model

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

16

May 08

Data Fusion in medical imaging What is Data Fusion? Joint Use of Heterogeneous Data

Why? Co-exploitation of multimodal data Registration / Matching

Which Context ? Computer assisted image interpretation systems

C. Barillot, Visages U746, IRISA, Rennes

Image Registration Basic concepts

Christian BARILLOT, Visages Team, IRISA, Rennes, France

17

May 08

Image Registration : Basic Concepts Source Image Is

ps2 p2

ps1 p1 p1 p1 p p1 p2 p2 p2 ppdd2 22

ps3 p3

p3 p3

p3

Destination pp pd11d1 Image Id

pd3 p3 p 3 d

¾ The notion of registration is to: Find a matching between points in one space (an image) and points in another space (also called a referential). Problem: Find a Transformation Φ Such as Is Φ Id Φ = f(R, T, δ(p)): Φ(ps) – pd≠=≈ε 0→ Optimization C. Barillot, Visages U746, IRISA, Rennes

Basic Referential Image Referential

Instrumental Referential

Subject Referential

p(u,v,w) p(x,y,z) p(i,j,k)

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

18

May 08

Class of registration domains ONE patient ONE modality

Intra-modality registration : Post-operative control Pathology tracking, Treatment probing

SEVERAL modalities

Inter-modalities registration Complementarities between sources of images Computer assisted therapeutic planning Computer assisted surgery Anatomy-function correlation

SEVERAL patients patients Intra-modality registration Model-based segmentation Registration/matching with an anatomical atlas Spatial normalization, study of anatomical variability

Inter-modalities registration Human brain mapping Anatomo-functional normalization

C. Barillot, Visages U746, IRISA, Rennes

Medical Image Registration : Basic Concepts Definition: Definition Let Is and It be two images (source and target) to match, Ωs and Ωt, two homologous structures extracted from these images. The registration procedure consists in finding the transformation Φ : Ωs→ Ωt which registers a landmark ω in Ωs to its correspondent Φ(ω) in Ωt. „

„

By generalization, this transformation can be applied to the underlying images Is and It : (It(x1, y1, z1) = Φ[Is(x2, y2, z2)]) For a given optimization method Ψ, the transformation Φθ∈Θ is computed by the optimization of :

argmin Δ (Φ θ ( Ω s)− Ω t ) (θ ∈Θ Ψ )

where Δ is the similarity measure and (θ∈Θ) the transformation parameters C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

19

May 08

Registration : The 4 basic stages „

Definition of homologous structures (Ω)

„

Definition of the type of transformation (Φ)

„

Definition of the cost function (Δ)

„

Definition of the cost function optimization algorithm (Ψ)

C. Barillot, Visages U746, IRISA, Rennes

Types of Homologous Structures (Ω) „

Size of the manifold (Dh) „ „ „ „ „

„

0D 1D 2D 3D nD

: : : : :

point (Ω=Constant) contour (Ω=f(u)) surface (Ω=f(u,v)) volume (Ω=f(u,v,w)) hypersurface (Ω=f(u1,…,un))

Size of the evolution (Euclidian) space (Dw) „ „ „

2D : surface, projection (Ω∈R2) 3D : discrete or continuous space (Ω∈R3) nD, nD+t : hypersurface, spatio-temporal (2D+t); (Ω∈Rn) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

20

May 08

Nature of Homologous Structures (Ω) „

External Referential : „ „

„

Fiducial markers Surgical frames (e.g. stereotactic)

Anatomical Referential : „ „

„

Anatomical landmarks (reference structures) Image (iconic) features (gray levels, gradients, curvatures, ...) Segmented shape C. Barillot, Visages U746, IRISA, Rennes

Which Transformation (Φ) ?

„

Linear Transforms : „ „ „

„

⎡ ⎡r11s1 r12 r13 ⎤ ⎢⎢ ⎥ r r s r 22 2 23 ⎥ ⎢ ⎢ 21 ⎢ ⎢⎣ r31 r32 r33 s3 ⎥⎦ ⎢ 0 0 ] ⎢⎣[ 0

⎡t x ⎤ ⎤ ⎢t ⎥ ⎥ ⎢ y ⎥⎥ ⎢⎣tz ⎥⎦ ⎥ ⎥ w ⎥⎦

Rigid Transformation (rotation + translation) Affine Transformation (rigid + scale) Projective Transformation (Ωs∈Rn → Ωd∈Rn-i, i>0)

Non-linear Transformation (dense): „

δ: pd=ps+ δ(ps) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

21

May 08

Similarity Function (Δ) Definition: The similarity function defines the objective criteria (cost) used to estimate the quality of the registration between two homologous structures (Ω). „

Three big classes of measures: „

„

„

Methods based on the definition of an intrinsic geometry (frame, external landmarks, reference planes, …). Methods based on Euclidian criteria (distances, surfaces, volumes). Methods based on image intensities or their derivatives (correlation in the spatial or frequency domain, entropy, optical flow, …) C. Barillot, Visages U746, IRISA, Rennes

Intensities of the floating Image Y=Φ(X)

Image registration: Measure from joint histogram Joint Histogram (HIST[x,y])

Intensities of the reference image X

Registered Images (1/2*[X+Φ(X)])

Φ=Ι

Φ=Tx

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

22

May 08

Image registration:

Relation between the transformation and the joint histogram

C. Barillot, Visages U746, IRISA, Rennes

Joint Histogram: Linear or Affine Dependencies Optimum Corr(x,y) y=αx+β

Corr ( X , Y ) =

Cov( X , Y ) var( X ).var(Y )

Intensities of the floating Image Y=Φ(X)

Optimum SSD/SAD y=x SSD( X , Y ) = ∑ ( x − y ) 2

x∈ X , y∈Y

SAD( X , Y ) =



x− y

x∈ X , y∈Y

Intensities of the reference image X

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

23

May 08

Joint Histogram:

Intensities of the floating Image Y=Φ(X)

Examples of Linear or Affine Dependencies

Joint Histogram (HIST[x,y])

Intensities of the reference image X

Registered Images (1/2*[X+Φ(X)])

Φ=Ι

Φ=Tx

C. Barillot, Visages U746, IRISA, Rennes

Joint Histogram:

Functional Dependencies (e.g. Correlation Ratio)

Intensities of the floating Image Y=Φ(X)

Joint Histogram (HIST[x,y])

Optimum η(Y|X) Y=f(X) Intensités de l’image référence

X

MRIMRI-T2

MRIMRI-PD

Intensities of the reference image X η (Y X ) = 1 −

var[Y − E (Y X )] var(Y )

X

Y

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

24

May 08

Joint Histogram:

Statistical Dependencies (e.g. Mutual Information)

Intensities of the floating Image Y=Φ(X)

Joint Histogram (HIST[x,y]) Optimum

MI(X,Y)

Intensités de l’image référence

X

CT

MRI

Intensities of the reference image X

MI(X,Y) = H(X) + H(Y) - H(X,Y) NMI(X,Y) = (H(X) + H(Y)) / H(X,Y)

X

Y

C. Barillot, Visages U746, IRISA, Rennes

Joint Histogram: Intensities of the floating Image Y=Φ(X)

Statistical Dependencies (e.g. Mutual Information) Optimum

MI(X,Y)

Φ=Ι

Joint Histogram (HIST[x,y])

Intensities of the reference image X

Φ=Tx=3mm

Φ=Tx=5mm

PET

X

MRI

Y

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

25

May 08

Optimization Issues (Ψ) Definition: Definition The optimization method defines how the cost function (Δ) will be minimized (or maximized) with respect to the set of transformation parameters θ∈Θ.

Δ

Cost Function Δ(θ)

A

G

C E

B D

Idea: Idea the goal is to find the minimal value (i.e. D rather than F) of Δ(θ) from any initialization point (e.g. G)

Z X

F

Transformation parameters (θ∈Θ)

Y

θ C. Barillot, Visages U746, IRISA, Rennes

Optimization Methods (Ψ) „

Non Global optimization methods: „

Quadratic or semi-quadratic approaches

„

May need the estimation of partial derivatives of Δ(θ).

„

„

„

Assume a quasi-convex energy around the desired solution Need a hierarchical resolution scheme (multiscale, multi-resolution) Examples: „

Least square, ICP, Gradient Descent, Newton-Raphson, Levenberg-Marquardt, Simplex, Powell... C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

26

May 08

Optimization Methods (Ψ) „

(2)

Global optimization methods: „

„ „

More robust approaches (proof of convergence at an infinite state) Computational cost Non applicable to high dimensional problems (e.g.

iconic registration) „

Examples: „

Dynamic Programming, Simulated Annealing, Genetic Algorithms, Clustering Methods, Branch and Bound, Evolutionary Algorithms, Statistical Methods , ... C. Barillot, Visages U746, IRISA, Rennes

Semi-quadratic Optimization using NEWUOA „

NEW Unconstrained Optimization Algorithm [Powell 04] 1.

2.

3.

4.

Compute a quadratic approximation of the function to optimize by using a set of initial points (parameters), typically (n+1)(n+2)/2 for a problem of dimension n Compute the maximum of the approximation within a “trust region” defined by the initial points Replace the “worst” parameter of the initial set with this newly estimated value and update the trust region Iterate C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

27

May 08

Illustration of NEWUOA optimization 1.4 1.4

f(x) f(x) Function samples final fit next interpolation point

1.2 1.2

11

Initial Region

Region Trust Trust Region

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

00

-0.2 -0.2

-0.4 -0.4 -10 -10

-5 -5

00

55

10 10

C. Barillot, Visages U746, IRISA, Rennes

Validation and Error Measurement

„

BrainWeb dataset: T1-w, T2-w, PD-w images in perfect alignment 5% additive noise 50 random transformations (+/- 5 mm +/- 5 degrees) Warping Index [Thevenaz&Unser00] :

„

Paired t-tests

„

„ „

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

28

May 08

Results Comparison Table

„

Mutual information C. Barillot, Visages U746, IRISA, Rennes

Results Algorithm Accuracy

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

29

May 08

Results Algorithms Run Time

C. Barillot, Visages U746, IRISA, Rennes

Outcome from this study „

Mutual Information „

„

Best Similarity Measure for any of the optimizers

NEWUOA „

„ „

Fastest Algorithm (compared to Powell or Simplex) Best Accuracy More Robust C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

30

May 08

Recalage Intra-Sujet Applications: • Approche générique basée «surface» •Recalage IRM/CT/PET •Recalage IRM/MEG •Recalage IRMa/3D-DSA • Recalage IRMf

C. Barillot, Visages U746, IRISA, Rennes

Multimodal Registration : Surface Matching Sx R11 R21

R13

0

Sy R22 R23

R12

0

R32 Sz R33 TY TZ

Surface Extraction

0 1

Binary Volume

.A .

P.C.A. P. C

Target Volume

Segmentation

R31 TX

Distance Volume Base Volume

Registered Volume

R12

R13

0

R21

Sy R22

R23

0

R31 TX

R32 TY

Sz R33 TZ

0 1

Sx R11

R12

R13

R21

Sy R22

R23

R31 TX

R21 R31 TX

R12

R13

Sy R22 R23 R32 Sz R33 TY TZ

0 0

R32 Sz R33 TY TZ

0 1

Sx R11

R12

R13

0

R21

Sy R22

R23

0

R31 TX

Sx R11

Multiresolution Processing

Sx R11

R32 Sz R33 TY TZ

0 1

0 0 0 1

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

31

May 08

Exemple de recalage multimodal

C. Barillot, Visages U746, IRISA, Rennes

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

32

May 08

Résultats de superpositions SPECT-IRM et PET-IRM

C. Barillot, Visages U746, IRISA, Rennes

Multimodal Registration: Evaluation „

„

„

„

Blinded evaluation of retrospective image registration techniques NIH Multi-Groups Project (prime: J.M. Fitzpatrick, Univ.. Vanderbilt) Multimodal (CT, MR, PET), 5-7 clinical cases each Variable resolutions „ „

„

CT: 512x512x(28-34) slices; 0.65x0.65x4 mm MR: T1, T2, PD; 256x256x(20-26) slices; 1.25x1.25x4 mm

10 brain anatomical structures for reference C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

33

May 08

Multimodal Registration: Evaluation Optic chiasm

(Source: [West J. et al., JCAT-21(4), 1997])

Junction of fourth ventricle with aqueduct Maximum aperture of fourth ventricle Whole head

4,00 3,00

Apex of left Sylvian fissure

T2 Optic chiasm

T1r

PD

0,00

Apex of right Sylvian fissure

Right occipital horn

1,00

Left occipital horn

2,00

Whole head

Error in mm

5,00

Left occipital horn Left globe Right globe Right occipital horn Junction of central sulcus with midline

Registration Error vs. Region of Interest (CT ↔ MRI)

C. Barillot, Visages U746, IRISA, Rennes

Multimodal Registration: Evaluation Volumetric Similarities

Point Simil. Simil.

SurfaceSurface-based Similarities

Error in mm

(Source: [West J. et al., JCAT-21(4), 1997])

10

T1 PD T2 T1 rect

8 6 4

PD rect T2 rect

2 0 1

2

3

4

5

6

7

8

9

10

11

Mean Registration Error CT-MR C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

34

May 08

Recalage multimodalité : Évaluation Similarité Similarités Volumé Volumétrique

Similarité Similarités Surfaciques

Simil. Simil. Point

> 30 Erreur in mm

25

T1

20

PD

15

T2 T1 rect

10

PD rect

5 0

T2 rect

1

2

3

4

5

6

7

8

9

10

11

Max Registration Error CT-MR (Source: [West J. et al., JCAT-21(4), 1997])

C. Barillot, Visages U746, IRISA, Rennes

Recalage IRM-MEG

Analyse Multirésolution Recalage Initial

Echantillonnage du « Headshape » Optimisation Rejet des points aberrants

Fin C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

35

May 08

Recalage IRM-MEG IRM Anatomique

Segmentation de la Tête

Acquisition du « Head Shape »

Recalage « Head Shpe » vs IRM

C. Barillot, Visages U746, IRISA, Rennes

Recalage MEG-IRM : Evaluation de la précision „

Précision théorique sur simulations : „

„

erreur moyenne de 3mm

Validation expérimentale „

„ „

Comparaison avec la méthode manuelle (basée sur des amers cutanés) Utilisation Clinique Transfert technologique C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

36

May 08

Recalage MEG-IRM : Résultats

C. Barillot, Visages U746, IRISA, Rennes

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

37

May 08

Recalage Angiographie X 3D / IRM

3D DSA

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

38

May 08

Recalage Angiographie X 3D / IRM „

Segmentation des vaisseaux

„

Détection des régions sulcales (courbures Lvv)

„

Minimisation de la distance entre les sillons et les vaisseaux

C. Barillot, Visages U746, IRISA, Rennes

Résultats

0 à 1mm 1 à 2mm 2 à 3mm 3 à 5mm > 5mm

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

39

May 08

Acquisition

Paradigme A

A R

R temps

Analyse de données en IRM fonctionnelle cérébrale Détection

moyenne activation A moyenne repos R

intensité

pixel temps C. Barillot, Visages U746, IRISA, Rennes

A

Tâche

R A R

A R temps

coupes sagittales

moyenne activation A

coupe sagittale

= moyenne repos R

image différence

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

40

May 08

IRMf: Mouvement du sujet -

moyenne repos R

moyenne activation A

image différence

C. Barillot, Visages U746, IRISA, Rennes

IRMf: Mouvement du sujet 1,5

décalage en x

1 0,5 0 -0,5

1 17 33 49 65 81 97 113

-1 1/10 pixel induit 1 à 7% de variation de signal C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

41

May 08

Exemple: Recalage monomodale par flot optique • Formulation gé générale : minimisation de la fonctionnelle de conservation de l’l’intensité intensité entre paires d’ d’images U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α 2

s∈S

∑ω

s , r ∈C

s

− ωr

2

• Introduction d’ d’estimateurs robustes

U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α ∑ ω s − ω2r s∈S U (ω , δ , β ; f ) = ∑ δ s (∇f (s, t )⋅ω s + s,fr t∈(Cs, t )) + ϕ1 (δ s ) + α 2

2

s∈S

∑β

s , r ∈C

sr

ωs − ωr

2

+ ϕ 2 (β sr )

• Approche multi ré résolution • Optimisation alterné alternée [1) estimation des poids δ, β et 2) estimation des paramè paramètres de transformation ω]

• Temps de calcul < 1s pour des volumes 643 C. Barillot, Visages U746, IRISA, Rennes

IRMf: Mouvement du sujet Activation

Image de différence sans correction

Image de différence avec correction

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

42

May 08

Deformable Registration

Deformable Registration: Not a new topic! „

Classical topic in morphometry (e.g. [ D’Arcy Thomson, 1917]) (Source: D’Arcy Thomson, On Growth and Form, Cambridge University Press, 1961)

„

Classical topic for brain imaging (e.g. [Talairach et al., 1967])

(Source: J. Talairach, G. Szikla, P. Tournoux, A. Prosalentis, and M. Bornas-Ferrier, Atlas d'Anatomie Stéréotaxique du Télencéphale. Masson, Paris, 1967)

„

Introduction of computer based procedures in the 80’s (R. Bacjsy, C. Broit and coll.; U. Grenander and coll.; F. Bookstein, …) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

43

May 08

Deformable Registration: evolution in a decade* In IPMI (oral): [86-88] F. Bookstein (general morphometry, brain, TPS) [91]

F. Bookstein (general morphometry, brain, TPS) D. Lemoine et al. (brain, Talairach Grid System)

[93]

F. Bookstein et al. (general morphometry, brain, TPS) K. Shields et al. (carotid plaques in US)

[95]

G. Christensen et al. (brain, fluid model) L. Collins et al. (brain, atlas based segmentation) J. Gee et al. (brain, bayesian framework) S. Sandor et al. (brain, atlas based segmentation)

[97]

P. Edwards et al. (brain, interventional imaging) T. Schiemann et al. (volume interaction)

[99]

A. Caunce et al. (sulci shape model) G. Christensen et al. (brain, homomorphism) H. Chui et al. (brain cortical point) L. Collins et al. (brain, atlas based segmentation) H. Lester et al. (brain, fluid model) D. Rey et al. (brain, growth of pathologies) K. Rohr et al. (TPS) O. Skrinjar et al. (brain, interventional imaging) M. Vaillant et al. (brain cortical surface)

* data collected from IPMI (Information Processing in Medical Imaging) C. Barillot, Visages U746, IRISA, Rennes

Deformable registration: When? ONE modality

ONE patient Registration of temporal sequences : Temporal deformation of anatomical structures (heart, chest, blood flow)

Growth, Pathologies follow-up

SEVERAL modalities

Correction of fMRI acquisitions Constraints to reconstruction / restoration algorithms Computer Assisted Surgery registration between preand intra-operative images

SEVERAL patients patients Model-based segmentation Building of digital atlases Registration/matching with an anatomical atlas Spatial normalization, study of anatomical variability Human brain mapping Anatomo-functional normalization (aid for the study of functional variability)

(e.g. MRI and Ultrasound) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

44

May 08

Deformable Registration : which transformation? „

Non-linear dense transformation: Definition : The transformation can be represented as a dense deformation field: a displacement vector δ is associated to each point of the homologous structures Ωs and Ωt :

δ: pt=ps+ δ(ps)

„

In an energetic framework, the general formulation becomes:

argmin

(θ ∈ Θ Ψ )

In a Bayesian context:

E [Δ ( p s + δ θ ( p s ), p t )]+ E [δ θ ] Likelihood : p((p (pss, pptt)|)|δ)

Prior : p(δ)

C. Barillot, Visages U746, IRISA, Rennes

Continuity of the transformation (E[δθθ])

„

Piecewise linear (C0 continuity)

„

Parametric (C1, C2 continuity)

(e.g. Talairach)

(e.g. Splines, Free-form

deformation, Cosines, RBF) „

Physics-inspired Models (e.g. mechanical) : „

Linear elasticity models (Navier equations )

„

Fluid models (Navier-Stokes equations )

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

45

May 08

Inversibility of the transformation „

The transformation h must be an homeomorphism, that means : „ „ „ „

The target volume V is convex (closed and bounded) h must be C1 continuous The jacobien of h : J(h) > 0 h must be invertible and h-1 continuous If h is C1 and J(h) > 0, then h is locally injective

In practice to enforce the homeomorphism is difficult Î people tend to rich the symmetry property only C. Barillot, Visages U746, IRISA, Rennes

Symmetry of the transformation „

The transformation h is considered as a symmetric transformation between a source S and a target T, when : „ „

h : S(x)ÆT(x); g: T(x) Æ S(x) h(x)°g(x)=h(g(x))=x Methods iteratively minimize

∑ [h( g ( x)) − x]

2

x∈V

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

46

May 08

Defomable Registration: Local and Global approaches „

Global, or “photometric” methods (Dh= Dw) „

„

„

„

„

Local, or “geometric” methods (Dh< Dw)

Rely on photometric similarity measures Provide a dense deformation field Anatomical coherence of the transformation? _ High dimensional optimization problem

Rely on extracted features (point, curves, surfaces)

„

Interpolation necessary (e.g. thin-plate-spline, RBF, …)

„

The transformation is mostly relevant in the neighborhood of the homologous features

„

¾ Hybrid: Hybrid: use of both homologous structures C. Barillot, Visages U746, IRISA, Rennes

Image fusion in neuroimaging using Global, Local and Hybrid methods

Subjects Data Base

Probability of Activation Y Statistical Model of Sulcus X

Segmented Sulci

Registered Sulci

Probability of Sulcus X

Local Registration Hybrid Matching to Reference Sulcus and Brain

Probability of Sulcus X

+

Probability of Activation Y

Hybrid Registration Probability of Sulcus X

Dense Matching to Reference Brain

Probability of Activation Y

Global Registration

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

47

May 08

Example of Inter-Individual Registration

C. Barillot, Visages U746, IRISA, Rennes

Deformable Registration: Local, or “geometric” methods Definition of local landmarks

Before registration

Averaging of 9 brains

Definition of a deformation model

After deformable registration

(Source: F. L. Bookstein, Thin-plate splins and the atlas problem for biomedical images, IPMI, Wye College, UK, 1991)

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

48

May 08

Talairach Stereotactic Proportional Grid System

(Source: J. Talairach, G. Szikla, P. Tournoux, A. Prosalentis, and M. Bornas-Ferrier, Atlas d'Anatomie Stéréotaxique du Télencéphale, Masson, Paris, 1967) C. Barillot, Visages U746, IRISA, Rennes

Probabilistic atlas based on local constraints Cortical Sulci

InterInter-subjects registration of sparse data (MEG) local referential non-linear local registration non-linear global registration

x0

xi

xm wu v

Statistical Shape Analysis X = Sillon moyen

m

∑ xi i =1

C=

∑ φi bi

⎡ ui ⎢v ⎢ i ⎢wi ⎢ ⎢⎣ t x

m

1 ∑ ~xi ~xi T ; ~xi = xi − X m i =1

C = Φ ΛΦ ; Λ T

Analysis

x = X + Φb m

x≈ X +

1 m

Sulcus Mean Shape

Reconstructed Sulcus

n

i=1

Constraints on TPS

f (x , y , z ) = a 0 + a 1x + a 2 y + a 3z + ∑ w iU (| Pi − (x , y , z ) |) , U(r) = r

wu v

⎡ λ1 = ⎢⎢ M ⎢⎣ 0

uj

uk

vj wj

vk wk

ty

tz

0⎤ 0⎥⎥ 0⎥ ⎥ 1⎥⎦

wv

u

0 ⎤ O M ⎥⎥ L λm ⎦⎥ L

Modal Amplitudes Modes Matrix

Modal Analysis

Synthesis

i =1

x = X + φ 1b1

[

b1 ∈ − 2 λ1 , + 2 λ1

]

principal Mode of deformation of the right central sulcus

Ex. 29 subjects

Registration and matching

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

49

May 08

Extraction of the local features

C. Barillot, Visages U746, IRISA, Rennes

Linear Local Registration (LR) local referential

x0

xi

xm wu v

wu v

⎡ ui ⎢ ⎢ vi ⎢ wi ⎢ ⎢⎣ t x

uj vj wj ty

uk vk wk tz

0⎤ 0 ⎥⎥ 0⎥ ⎥ 1 ⎥⎦

w v u

29 subjects

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

50

May 08

Statistical Shape Model :

Principal Component Analysis 1 m X = ∑ xi m i =1

Reconstructed Shape

Mean sulcus

29 subjects

Mean Shape

m

∑ ~xi ~xi T ; ~xi = xi − X

1 m

i =1

⎡ λ1

C = Φ Λ Φ T ; Λ = ⎢⎢ M ⎢0 Analysis ⎣

x = X + Φb

L O L

0 ⎤ M ⎥⎥

λm ⎥⎦

Modal Amplitudes Modes Matrix

Synthesis

m

x≈ X +

C=

∑ φi bi i =1

x = X + φ 1b1

[

b1 ∈ − 2 λ1 ,+ 2 λ1

]

principal Mode of deformation of the right central sulcus

C. Barillot, Visages U746, IRISA, Rennes

Non-Linear Local Registration (NLL): Use of thin plate splines

f : interpolation n source points Pi

n target points Vi

x Source: left central S. of one subject

function

(W a

0

a1

a2

a3 )

i =1

x = x + Φ mbm application

x Target: mean central sulcus

n

f ( x, y, z ) = a0 + a1 x + a2 y + a3 z + ∑ wiU (| Pi − ( x, y, z ) |)

(x, y, z)

f

to a dipole Local extension of the deformation field

f(x, y, z)

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

51

May 08

Somatotopy around the principal mode using the non -linear local method (NLL) non-linear Little finger

Index

Thumb

C. Barillot, Visages U746, IRISA, Rennes

Deformable Registration: Global, iconic or photometric methods Find a the transformation between one reference (atlas) and one individual Model 1 Source

Target

Transformed Deformation Image Field

Model 2 C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

52

May 08

Adaptive Non Rigid Registration: ©) Using optical flow and robust estimators (RoMEO© „

General formulation (optical flow estimation): U (ω ; f ) = ∑ [∇f (s, t ) ⋅ ω s + f t (s, t )] + α 2

s∈S

„

Robust estimation of the deformation field :

Ö

Reduce the sensitivity to noise and preserve the deformation discontinuities: U (ω , δ , β ; f ) = ∑ δ (∇f (s, t )⋅ ω + f (s, t )) + ϕ (δ ) + α ∑ β ω − ω

„

s

Adaptative multigrid algorithm:

s

t

1

s

s , r ∈C

Pyramide multiré multirésolution

sr

s

s , r ∈C

2

2

s∈S

∑ω

r

s

− ωr

2

+ ϕ 2 (β sr )

Minimisation multigrille

Ö Extensible to other similarity similarity

functions (e.g. (e.g. fMRI registration): registration):

C. Barillot, Visages U746, IRISA, Rennes

Registration between 2 subjects

Deformable Registration: Multiresolution optimization

Intensity RMS

Init after resolution 1

Grid 4 Grid 3 Grid 2

10

20

30

40

Grid 1 Grid 0 50

60

70

CPU time (mn (mn))

Multiresolution Pyramid

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

53

May 08

RoMEO ©

Talairach

Affine

Deformable Registration : Spatial Normalization

Target

Averaging of 18 subjects

C. Barillot, Visages U746, IRISA, Rennes

Hybrid Approach

Christian BARILLOT, Visages Team, IRISA, Rennes, France

54

May 08

Hybrid approach:

Cooperation between local and global approaches „

Global, or “photometric” method: „ „

„

Image registration based on image information Provides a dense deformation field

Local, or “geometric” method: „ „

Rely on landmarks (points, surfaces, …) Use an interpolation function (e.g. TPS) Cooperative approach, where geometric and photometric information are combined into the same framework

C. Barillot, Visages U746, IRISA, Rennes

Hybrid deformable registration : Introduction of sparse constraints (JULIET©) „

Creation of a constraints field (ωc) :flow) : Use of global (e.g. optical

„ Matching

of homologous structures (e.g. sulci )

Mean without constraints

„ Taking

into account possible interruptions between sulci Mean with constraints

Reference Subject C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

55

May 08

Deformed central sulci (from 18 sujects) Without constraints

With constraints

Mean sulci ()

C. Barillot, Visages U746, IRISA, Rennes

Visualization of the cortical deformation with constraints

without constraints

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

56

May 08

Cooperation between Segmentation and Registration Tasks

Cooperative scheme for Data Fusion Multimodal Registration

Original

Registered Data

Segmentation

Data

Segmented Data

Modeling

Modeled Data

Deformable Registration

a priori Knowledge

Information Model

a posteriori Knowledge

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

57

May 08

Deformable Registration and Segmentation

Atlas Based Segmentation

Expert Segmentation

Atlas (Source: [Collins et al, IPMI’95])

Deformable Registration

Deformable Registration + Level Sets (simulation)

Deformable Registration

Deformable Registration + Level Sets (real data)

C. Barillot, Visages U746, IRISA, Rennes

Model-Guided Segmentation and Labeling: Integration of fuzzy control and level sets* „

„

Objective : Segmentation of brain structures close, with similar intensities and hardly defined contours Method : „

„

„

Statistical analysis of shape and localization of structures Concurrent evolution of several level sets

Contribution : „

„

Integration of fuzzy control to constrain the competitive evolution of level sets Utilization of a statistical shape models to define the fuzzy control variables *: C. Ciofolo, C. Barillot, IPMIC.2005, 2006IRISA, Rennes Barillot,ECCV Visages U746,

Christian BARILLOT, Visages Team, IRISA, Rennes, France

58

May 08

Deformable Registration:

Study of the Anatomical Variability

(Source: MNI, U. McGill, Montreal )

Probabilities of cortical labels (max proba)

Probabilities for Sulci Occurrence (> 10%) C. Barillot, Visages U746, IRISA, Rennes

Deformable Registration: Labelling from atlas Sulci Labeling

(Source: [LeGoulher et al., 2000] )

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

59

May 08

Application of Deformable Registration in Clinical Neuroscience

Rigid registration of intra-operative 3D free-hand ultrasound with MRI „

„

Objective: Construct probability maps of hyperechogenic structures from MRI and Ultrasound images for registration. Principal: Find a function f relating the MRI intensity of a voxel X (u(X)) with its probability to be included in the set of hyperechogenic structures: Before

*: P. Coupe et al.,IEEE-ISBI 2007

Christian BARILLOT, Visages Team, IRISA, Rennes, France

After

C. Barillot, Visages U746, IRISA, Rennes

60

May 08

Non-rigid registration of intra-operative 3D free-hand ultrasound with MRI „

„

Objective: Compensate for the intraoperative deformations after opening of brain envelopes

„

Results „

Validation on a synthetic deformation

„

Experimentation on 5 patients

Method: „

Non rigid transformation using a multi-frequential approach (cosines basis defined from their pulsation ) mean estimated deformation 2.71 +/+/- 1.03 mm

„

Use the joint probability between hyperechogenic structures and liquid interfaces in MRI

mean estimated deformation 1.81 +/+/- 1.02 mm

[P. Coupe et al., Patent]

C. Barillot, Visages U746, IRISA, Rennes

Medical Image Computing in Neurological Diseases: Voxel based morphometry in Parkinsonian disorders*

Objective „

„

Differentiate between Parkinson’s Disease (PD) and MSA (Multiple Systems Atrophy) and PSP (Progressive Supranuclear Palsy) symptoms (current : 66% TP) Early diagnosis from crosssectional MRI at a single time point at inclusion

Result „ „

„

Only 20 patient from each group 90% differential diagnosis PD vs MSA/PSP Error rate cut by 50%

Exemples of MSA Normal

*: S. Duchesne et al., SPIE 2007

Christian BARILLOT, Visages Team, IRISA, Rennes, France

Mild

Severe

C. Barillot, Visages U746, IRISA, Rennes

61

May 08

Surface based morphometry in Parkinsonian disorders Cortical Feature Population Average Maps

„

Objective: „

„

„

Differentiation between Parkinson’s Disorders Early diagnosis from crosssectional MRI at a single time point at inclusion

Method „

Extraction of GM/WM interface

„

Computation of cortical indexes cortical gray matter thickness

„

Results: „

Sulcal each Depth group Only 20 patient from

Brain

Mapping of statistical difference between groups

„ Curvature

Cortical Thickness

geodesic sulcal depth

Cortical Feature Significant Mean Difference Maps Red/ Red/Yellow: Yellow: IPD > MSA, IPD > PSP, MSA> PSP Blue/ Blue/Cyan: Cyan: MSA>IPD, PSP>IPD, PSP>MSA

[D. Tosun et al., Miccai’07]

C. Barillot, Visages U746, IRISA, Rennes

Data Fusion of Anatomical and Functional Brain Images

Christian BARILLOT, Visages Team, IRISA, Rennes, France

62

May 08

Deformable Registration for Anatomo-Functional Imaging Talairach Atlas

MEG Localisations

C. Barillot, Visages U746, IRISA, Rennes

Spatial Normalization for the Analysis of Functional Data Example of comparison of average activation responses Linear Registration

NonNon-Linear Registration

Illustrations courtesy from J.C. Gee, GRASP Lab., Univ. of Pennsylvania

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

63

May 08

Mapping of the somatotopy using global and hybrid deformable registration methods

Mutual Inf. Method (M)

Romeo Method (R)

SPM Method (S)

Talairach Method (P)

Juliet Method (H)

Gaussian Ellipsoid at 3σ for 15 subjects C. Barillot, Visages U746, IRISA, Rennes

Comparative Somatotopy : local method vs hybrid method Juliet (hybrid deformable registration method)

NonNon-Linear Local deformable registration method

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

64

May 08

Deformable Registration : Limits „

In General „

„

Segmentation/Labeling „

„

Validation/Generality of methods Labeling of highly variable structures (e.g. marginal cortical sulci )

Atlas matching methods using global approaches „ „ „

Barely efficient on cortical anatomy Source dependent Not yet real-time

C. Barillot, Visages U746, IRISA, Rennes

Non Linear

Linear

Deformable Registration: Limits

Simulation

Real Data

(10 Subjects)

(Source: [Collins et al., 1996] ) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

65

May 08

Deformable Registration:

International project for evaluation of non-rigid registration

Affine

U. McGill

Talairach „

„

SPM

Target

Anatomical and functional validity of the registration On the same corpus (18 subjects)

Others Participants: „

„

U. Iowa

Aim of the study „

„

IRISA

Epidaure

U. McGill (L. Collins), Epidaure Project INRIA, U. Iowa (G. Christensen), SPM, (J. Ashburner)

Criteria „ „ „

Anatomically meaningful Local and global measures Not related to the similarity used to perform the registration C. Barillot, Visages U746, IRISA, Rennes

6 major sulci per hemisphere

Local Criteria on sulcal matching (highly variable) † Use of cortical sulci (anatomical (anatomical and functional landmarks) landmarks) † Visualization of overlapping deformed left central sulci

(performed also on superior frontal and on lateral sulci)

MI

An

PS

De

RM

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

66

May 08

Perspectives

Data Fusion and Registration Perspectives „

„

Needs to take into account local and global constraints in the deformable registration process (hybrid registration) More concerns about the clinical practice „ „ „

„

pre-surgical mapping intra-operative and real time imaging Cope with missing tissues (registration of dissipative material)

Introduction to the statistics of transformations (in a tangent

space) „

„ „

Introduction of statistical information for the guidance of the deformation

Registration of vector and tensor fields Tighter links between registration and segmentation (e.g. thru active surface formulation) C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

67

May 08

Some references : Thesis or Books on data fusion and registration, and on general aspects 1.

2.

3.

4.

5.

6.

7.

Barillot, C. (1999). “Fusion de données et imagerie 3D en médecine,” Habilitation à diriger des recherches, University of Rennes 1, Rennes. ftp://ftp.irisa.fr/techreports/habilitations/barillot.pdf Corouge, I. (2003). “Modélisation statistique de formes en imagerie cérébrale.” PhD, Univ. Rennes I, Rennes. ftp://ftp.irisa.fr/techreports/theses/2003/corouge.pdf Corouge, I., Hellier, P., and Barillot, C. (2005). “From Global to Local Approaches for Non-Rigid Registration.” Medical Imaging Systems Technology: Methods in General Anatomy, vol. 265, C. T. Leondes Ed., Singapore, World Scientific Publishing. Hellier, P. (2000). “Recalage non rigide en imagerie cérébrale: méthodes et validation,” PhdThesis, Université de Rennes1. ftp://ftp.irisa.fr/techreports/theses/2000/hellier.pdf Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn, Cambridge University Press, Cambridge. http://www.nr.com/ Van Bemmel, J. H., and Musen, M. A. (1997). Handbook of medical informatics, Springer, URL: http://www.mieur.nl/mihandbook . Viola, P. A. (1995). “Alignment by Maximization of Mutual Information,” Ph.D. Thesis, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA. C. Barillot, Visages U746, IRISA, Rennes

Review Papers 1.

2.

3. 4.

5.

Barillot, C. (1993). “Basic Principles of Surface and Volume Rendering Techniques to Display 3D Medical Data.” IEEE Engineering in Medecine and Biology, 12(1), 111-119. Brown, L. F. (1992). “A survey of image registration techniques.” ACM Computing Surveys, 24(4), 325-376. Gee, J. C. (1999). “On matching brain volumes.” Pattern Recognition, 32(1), 99-112. Lester, H., and Arridge, S. R. (1999). “A survey of hierarchical non-linear medical image registration.” Pattern Recognition, 32(1), 129-149. Maintz, J., and Viergever, M. (1998). “A survey of medical image registration.” Medical

Image Analysis, 2(1), 1-36. 6.

7.

8.

Maurer, C., and Fitzpatrick, J. (1993). “A review of medical image registration.” Interactive image guided neurosurgery, American association of neurological surgeons, pp.17-44. McInerney, T., and Terzopoulos, D. (1996). “Deformable models in medical image analysis: a survey.” Medical Image Analysis, 1(2), 91-108. Zitova, B., and Flusser, J. (2003). “Image registration methods: a survey.” Image and Vision Computing, 21(11), 977-1000. C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

68

May 08

Research Papers on deformable registration (1) 1.

2.

3.

4.

5.

6.

7.

8.

Ashburner, J., and Friston, K. J. (1999). “Nonlinear Spatial Normalization Using Basis Functions.” Human Brain Mapping, 7(4), 254-266. Bajcsy, R., and Kovacic, S. (1989). “Multiresolution Elastic Matching.” Computer Vision Graphics and Image Processing, 46, 1-21. Bookstein, F. (1989). “Principal Warps: Thin plate splines and the decomposition of deformations.” IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(6), 567-585. Christensen, G., Rabbit, R., and Miller, M. (1996). “Deformable templates using large deformation kinematics.” IEEE trans image processing, 5(10), 1435-1447. Christensen, G. E., and Johnson, H. J. (2001). “Consistent image registration.” IEEE Transactions on Medical Imaging, 20(7), 568 - 582. Collins, L., and Evans, A. (1997). “Animal: validation and applications of nonlinear registration-based segmentation.” International Journal of Pattern Recognition and Artificial Intelligence, 8(11), 12711294. Collins, L., Le Goualher, G., Venugopal, R., Caramanos, A., Evans, A., and Barillot, C. (1996). “Cortical constraints for non-linear cortical registration.” Proc. Visu. in Biomed. Computing, LNSC, K. Hohne and R. Kikinis, Eds., Springer, pp.307-316. Corouge, I., Dojat, M., and Barillot, C. (2004). “Statistical shape modeling of low level visual area borders.” Medical Image Analysis, 8(3), 353-360. C. Barillot, Visages U746, IRISA, Rennes

Research Papers on deformable registration (2) 1.

2.

3.

4.

5.

6.

7.

8.

Corouge, I., Hellier, P., Gibaud, B., and Barillot, C. (2003). “Interindividual functional mapping: a nonlinear local approach.” NeuroImage, 19(4), 1337-1348. Friston, K., Ashburner, J., Frith, C., Poline, J., Heather, J., and Frackowiak, R. (1995). “Spatial registration and normalisation of images.” Human Brain Mapping, 2, 165-189. Gee, J. C., le Bricquer, L., and Barillot, C. (1995). “Probabilistic matching of brain images.” Information Processing in Medical Imaging, Y. Bizais, C. Barillot, and R. di Paola Eds., Dordrecht., Kluwer Academic Publishers, pp.113-125. Hellier, P., Ashburner, J., Corouge, I., Barillot, C., and Friston, K. J. (2002). “Inter subject registration of functional and anatomical data using SPM.” in Lecture Notes in Computer Sciences: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002, vol. LNCS-2489, R. Kikinis, R. Ellis, and T. Dohi Eds., Tokyo, Springer-Verlag, pp.590-587. Hellier, P., and Barillot, C. (2003). “Coupling dense and landmark-based approaches for non rigid registration.” IEEE Transactions on Medical Imaging, 22(2), 217-227. Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins, D. L., Evans, A., Malandain, G., Ayache, N., Christensen, G. E., and Johnson, J. H. (2003). “Retrospective Evaluation of Intersubject Brain Registration.” IEEE Transactions on Medical Imaging, 22(9), 1120-1130. Hellier, P., Barillot, C., Mémin, E., and Pérez, P. (2001). “Hierarchical estimation of a dense deformation field for 3D robust registration.” IEEE Transactions on Medical Imaging, 20(5), 388-402. Le Goualher, G., Argenti, A.-M., Duyme, M., Baaré, W. F. C., Hulshoff Pol, H. E., Boomsma, D. I., Zouaoui, A., Barillot, C., and Evans, A. C. (2000). “Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape.” Neuroimage, 11(5), 564-574. C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

69

May 08

Research Papers on deformable registration (3) 1.

2.

3.

4.

5.

6.

7.

Le Goualher, G., Barillot, C., and Bizais, Y. (1997). “Modeling cortical sulci with active ribbons.” International Journal of Pattern Recognition and Artificial Intelligence, 8(11), 1295-1315. Le Goualher, G., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., and Evans, A. C. (1999). “Automated Extraction and Variability Analysis of Sulcal Neuroanatomy.” IEEE Transactions on Medical Imaging, 18(3), 206-217. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. (1997). “Multimodality image registration by maximisation of mutual information.” IEEE transactions on Medical Imaging, 16(2), 187-198. Miller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. (1993). “Mathematical textbook of deformable neuroanatomies.” Proc Natl Acad Sci U S A, 90(24), 11944-8. Thirion, J.-P. (1998). “Image matching as a diffusion process: an analogy with {Maxwell's} demons.” Medical Image Analysis, 2(3), 243-260. van den Elsen, P. A., Pol, E. J. D., and Viergever, M. A. (1993). “Medical image matching--a review with classification.” IEEE Engineering in Medicine and Biology Magazine, 12(1), 26-39. West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Maurer, C. R., Kessler, R. M., Maciunas, R. J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P. A., Napel, S., Sumanaweera, T. S., Harkness, B., Hemler, P. F., Hill, D. L. G., Hawkes, D. J., Studholme, C., Maintz, J. B. A., Viergever, M. A., Malandain, G., Pennec, X., Noz, M. E., Maguire, G. Q., Pollack, M., Pellizzari, C. A., Robb, R. A., Hanson, D., and Woods, R. (1997). “Comparison and Evaluation of Retrospective Intermodality Brain Image Registration Techniques.” J. Computer Assisted Tomography, 21(4), 554-566. C. Barillot, Visages U746, IRISA, Rennes

Research Papers on deformable registration (4) „

„

„

„

„

„

„

„

„

Mazziotta, J., Toga, A., Evans, A., Fox, P., and Lancaster, J. (1995). “A probabilistic atlas of the human brain: theory and rationale for its development.” Neuroimage, 2, 89-101. McInerney, T., and Terzopoulos, D. (1996). “Deformable models in medical image analysis: a survey.” Medical Image Analysis, 1(2), 91-108. Miller, M. I., Christensen, G. E., Amit, Y., and Grenander, U. (1993). “Mathematical textbook of deformable neuroanatomies.” Proc Natl Acad Sci U S A, 90(24), 11944-8. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn, Cambridge University Press, Cambridge. Thirion, J.-P. (1998). “Image matching as a diffusion process: an analogy with {Maxwell's} demons.” Medical Image Analysis, 2(3), 243-260. Van Bemmel, J. H., and Musen, M. A. (1997). Handbook of medical informatics, Springer, URL: http://www.mieur.nl/mihandbook. van den Elsen, P. A., Pol, E. J. D., and Viergever, M. A. (1993). “Medical image matching--a review with classification.” IEEE Engineering in Medicine and Biology Magazine, 12(1), 26-39. Viola, P. A. (1995). “Alignment by Maximization of Mutual Information,” Ph.D. Thesis, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Cambridge, MA. West, J., Fitzpatrick, J. M., Wang, M. Y., Dawant, B. M., Maurer, C. R., Kessler, R. M., Maciunas, R. J., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P. A., Napel, S., Sumanaweera, T. S., Harkness, B., Hemler, P. F., Hill, D. L. G., Hawkes, D. J., Studholme, C., Maintz, J. B. A., Viergever, M. A., Malandain, G., Pennec, X., Noz, M. E., Maguire, G. Q., Pollack, M., Pellizzari, C. A., Robb, R. A., Hanson, D., and Woods, R. (1997). “Comparison and Evaluation of Retrospective Intermodality Brain Image Registration Techniques.” J. Computer Assisted Tomography, 21(4), 554-566. C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

70

May 08

Other related research paper 1.

Beauchemin, S. S., and Barron, J. L. (1995). “The Computation of Optical Flow.” ACM

Computing Surveys, 27(3), 433-467. 2.

3.

Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., and Evans, A. C. (1998). “Design and Construction of a Realistic Digital Brain Phantom.” IEEE Transactions on Medical Imaging, 17(3), 463-468. Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). “Active Shape Models - their training and application.” Computer Vision and Image Understanding, 61(1), 38-59.

C. Barillot, Visages U746, IRISA, Rennes

Christian BARILLOT, Visages Team, IRISA, Rennes, France

71