PEMANFAATAN SEKAM PADI SEBAGAI BAHAN BAKU PAPAN PARTIKEL DENGAN MENGGUNAKAN PEREKAT UREA FORMALDEHIDE
Oleh:
HERMAWAN NIM. 130 500 049
PROGRAM STUDI TEKNOLOGI HASIL HUTAN JURUSAN TEKNOLOGI PERTANIAN POLITEKNIK PERTANIAN NEGERI SAMARINDA SAMARINDA 2016
PEMANFAATAN SEKAM PADI SEBAGAI BAHAN BAKU PAPAN PARTIKEL DENGAN MENGGUNAKAN PEREKAT UREA FORMALDEHIDE
Oleh:
HERMAWAN NIM. 130 500 049
Karya Ilmiah Sebagai Salah Satu Syarat Untuk Memperoleh Sebutan Ahli Madya Kehutanan Pada Program Diploma III Politeknik Pertanian Negeri Samarinda
PROGRAM STUDI TEKNOLOGI HASIL HUTAN JURUSAN TEKNOLOGI PERTANIAN POLITEKNIK PERTANIAN NEGERI SAMARINDA SAMARINDA 2016
PEMANFAATAN SEKAM PADI SEBAGAI BAHAN BAKU PAPAN PARTIKEL DENGAN MENGGUNAKAN PEREKAT UREA FORMALDEHIDE
Oleh:
HERMAWAN NIM. 130 500 049
Karya Ilmiah Sebagai Salah Satu Syarat Untuk Memperoleh Sebutan Ahli Madya Kehutanan Pada Program Diploma III Politeknik Pertanian Negeri Samarinda
PROGRAM STUDI TEKNOLOGI HASIL HUTAN JURUSAN TEKNOLOGI PERTANIAN
POLITEKNIK PERTANIAN NEGERI SAMARINDA SAMARINDA 2016
HALAMAN PENGESAHAN
Judul Karya Ilmiah
:
Pemanfaatan Sekam Padi Sebagai Bahan Baku Papan Partikel dengan Menggunakan Perekat Urea Formaldehide
Nama
:
Hermawan
NIM
:
130 500 049
Program Studi
:
Teknologi Hasil Hutan
Jurusan
:
Teknologi Pertanian
Penguji I,
Penguji II,
Firna Novari, S.Hut, MP NIP. 19710717 199702 2 001
Dr. Ir. F. Dwi Joko Priyono, MP NIP. 19581017 198803 1 001
Pembimbing,
Ir. Yusdiansyah, MP NIP. 19591216 198903 1 002
Menyetujui, Ketua Program Studi Teknologi Hasil Hutan, Politeknik Pertanian Negeri Samarinda
Eva Nurmarini, S.Hut, MP NIP. 19750808 199903 2 002
Lulus Ujian Pada Tanggal:
Mengesahkan, Ketua Jurusan Teknologi Pertanian, Politeknik Pertanian Negeri Samarinda
Hamka, S. TP. M, Sc NIP. 19760408 200812 1 002
SURAT PERNYATAAN TELAH MELAKSANAKAN PENELITIAN
Saya yang bertanda tangan dibawah ini:
Nama Tempat/Tanggal lahir Program Studi Jurusan Universitas/PT Semester Alamat
: Hermawan : Samarinda, 07 Desember 1993 : Teknologi Hasil Hutan : Teknologi Pertanian : Politeknik Pertanian Negeri Samarinda : VI (Enam) : Jl. Kemuning Rt. 06 Kel. Handil Bakti Kec. Palaran
Adalah benar MELAKSANAKAN PENELITIAN DAN TELAH SELESAI MELAK SANAKAN PENELITIAN TERSEBUT dari tanggal 15 Mei 2016 13 Juli 2016 dengan judul penelitian Sekam Padi Sebagai Bahan Baku Papan Partikel dengan Menggunakan Perekat Urea Formaldehide di bawah bimbingan Dosen Ir. Yusdiansyah, MP dan dibantu Teknisi Laboratorium Rekayasa Pengolahan Kayu yaitu Bapak Jembawan S,Hut., Ibu Alfrida, SE dan Teknisi Laboratorium Sifat Kayu dan Analisis Produk yaitu Ibu Ratnawati S.Hut.
Demikian surat pernyataan ini dibuat dengan sebenarnya untuk dipergunakan sebagaimana mestinya.
Samarinda, 25 Juli 2016 Mahasiswa yang bersangkutan
Hermawan NIM. 130 500 049
ABSTRAK
HERMAWAN . Pemanfaatan Sekam Padi Sebagai Bahan Baku Papan Partikel Dengan Menggunakan Perekat Urea Formaldehide (dibawah bimbingan YUSDIANSYAH) Penelitian ini dilatar belakangi oleh pemanfaatan sekam padi yang kurang maksimal di kalangan masyarakat pada umumnya. Sekam sering kali dimusnahkan dengan cara dibakar sehingga menimbulkan polusi pada lingkungan. Oleh karena itu tujuan dari penelitian ini adalah untuk mengetahui apakah sekam padi memiliki kualitas papan yang sesuai dengan Standar Nasional Indonesia (SNI) yang meliputi sifat fisika dan mekanika papan partikel yaitu kerapatan, kadar air, pengembangan tebal, keteguhan lentur (MOE), keteguhan patah (MOR), keteguhan rekat internal dan kuat cabut sekrup. Dari proses pembuatan papan partikel yang berbahan dasar dari sekam padi dengan jumlah sebesar 3075,15 gram yang menghasilkan 5 buah sample papan partikel. Dimana papan yang dihasilkan adalah papan satu lapis dengan ukuran panjang, lebar, dan tebal 31 cm x 31 cm x 1 cm. Partikel yang sudah ditimbang dengan berat 615,03 gram kemudian dimasukkan ke dalam drum pengaduk dan dicampur dengan bahan perekat yang sudah ditimbang sebanyak 153,76 gram yang disemprot dengan alat spryer ke dalam drum. Partikel dan perekat dicampur merata kemudia campuran tersebut dimasukkan kedalam cetakan dan diberi tekanan awal dan dilanjutkan dengan kempa panas selama 10 menit kemudian mesin dimatikan dan biarkan papan tetap di dalam mesin hot press selama 20 menit hingga suhu mesin menurun. Setalah itu papan dikeluarkan dari mesin hot press dan selang 3 menit papan dilepas dari cetakan mall besi. Hasil papan partikel dari sekam padi, setelah dilakukan pengujian secara garis besar sudah memenuhi standar SNI yang dipersyaratkan. Namun ada beberapa parameter yang diuji belum memenuhi standar SNI yaitu keteguhan lentur (MoR), keteguhan rekat internal dan daya kuat cabut skrup dikarenakan papan memiliki kerapatan yang sedang. Sehingga papan partikel yang dihasilkan ini cocok diperuntukkan untuk penggunaan kontruksi ringan. Kata Kunci: Sekam padi, Papan Partikel, Perekat Urea Formaldehide.
RIWAYAT HIDUP
Hermawan lahir pada tanggal 07 Desember 1993 di kampung Gelinggang, Kelurahan Handil Bakti, Kecamatan Palaran, Kota Samarinda, Kalimantan Timur. Merupakan anak kedua dari enam bersaudara dari pasangan Bapak Mansyur dan ibunda tercinta Pisah. Tahun 2000 memulai pendidikan formal pada Sekolah Dasar Negeri (SDN) 012 Samarinda, dan lulus tahun 2006, kemudian melanjutkan ke Sekolah Menengah Pertama Negeri (SMPN) 24 Samarinda, pada tahun 2006 dan lulus tahun 2009.
Pada tahun 2009 melanjutkan ke Sekolah Menengah Kejuruan
Negeri (SMKN) 19 Samarinda dan lulus pada tahun 2012. Pendidikan tinggi dimulai pada tahun 2013 di Politeknik Pertanian Negeri Samarinda, Jurusan Teknologi Pertanian (TP), Program Studi Teknologi Hasil Hutan (THH). Pada bulan Maret (PKL)
di PT Rimba
Mei 2016
melaksanakan Praktik Kerja Lapang
Raya Lestari, Loa Kulu, Kalimantan Timur. Sebagai
syarat memperoleh predikat Ahli Madya Kehutanan, penulis mengadakan penelitian dengan judul
Sekam Padi Sebagai Bahan Baku
Papan Partikel dengan Menggunakan Perekat Urea Formaldehide di bawah bimbingan Ir. Yusdiansyah, MP.
KATA PENGANTAR
Dengan memanjatkan puji dan syukur kehadirat ALLAH SWT, yang telah memberikan
taufik,
rahmat
serta
hidayah-Nya
sehingga
penulis
dapat
menyelesaikan karya ilmiah ini. Karya ilmiah ini disusun berdasarkan hasil penelitian yang dilakukan di Laboratorium Rekayasa Pengolahan Kayu dan Laboratorium Sifat Kayu dan Analisis Produk Program Studi Teknologi Hasil Hutan. Penelitian dan penyusunan karya ilmiah ini dilaksanakan dari tanggal 15 Mei - 13 Juli 2016, yang merupakan syarat untuk menyelesaikan tugas akhir di Politeknik Pertanian Negeri Samarinda dan mendapatkan sebutan Ahli Madya. Pada kesempatan ini penulis menyampaikan ucapan terima kasih dan penghargaan kepada: 1. Dosen pembimbing, yaitu Bapak Ir. Yusdiansyah, MP selaku dosen pembimbing yang telah mengarahkan penulis mulai dari persiapan penelitian hingga penyusunan karya ilmiah ini selesai. 2. PLP pendamping, yaitu Bapak Jembawan S. Hut, ibu Alfrida, SE dan Ibu Ratnawati, S.Hut yang telah mendampingi dan memberikan pengarahan selama proses penelitian karya ilmiah ini hingga selesai. 3. Kepala Laboratorium Sifat Kayu dan Analisis Produk, Bapak Ir. Wartomo, MP. 4. Kepala Laboratorium Rekayasa Pengolahan Kayu Bapak Ir. Yusdiansyah, MP. 5. Dosen penguji, yaitu Ibu Firna Novari, S.Hut, MP dan Bapak Dr. Ir. F. Dwi Joko Priyono, MP. 6. Ketua
Program
Studi
Teknologi
Hasil
Hutan,
yaitu
Ibu
Eva Nurmarini S. Hut, MP. 7. Ketua Jurusan Teknologi Pertanian, yaitu Bapak Hamka S, TP, M, Sc. 8. Direktur Politeknik Pertanian Negeri Samarinda, yaitu Bapak Ir. Hasanudin, MP. 9. Para Staff pengajar, administrasi dan PLP di Program Studi Teknologi Hasil Hutan. 10. Ayah dan ibunda serta kakak tercinta yang telah memberikan dukungan moril dan materil maupun doa kepada penulis selama mengikuti pendidikan tinggi di Politeknik Pertanian Negeri Samarinda.
11. Ismail, Kasman, M. Hendriansyah Jumari, Dwi Atini Putri, Romiyanus, Novia Resniawaty. S, Kellytas Anjasmara dan Vinsensia Bernadeta yang telah turut serta dalam membantu menyelesaikan penelitian ini dengan baik. 12. Serta rekan-rekan angkatan 2013 tanpa terkecuali yang telah banyak mendukung dan memberikan semangat. Walaupun sudah berusaha dengan sungguh-sungguh, penulis menyadari masih banyak terdapat kekurangan dan kelemahan dalam penulisan ini, namun semoga karya ilmiah ini dapat bermanfaat bagi siapa saja yang membacanya. Amin.
Penulis
Samarinda, Juni 2016
DAFTAR ISI
Halaman HALAMAN PENGESAHAN ....................................................................
i
KATA PENGANTAR ..............................................................................
ii
DAFTAR ISI ...........................................................................................
iii
DAFTAR TABEL ....................................................................................
iv
DAFTAR GAMBAR ................................................................................
v
I.
PENDAHULUAN .............................................................................
1
II.
TINJAUAN PUSTAKA ....................................................................
4
A. B. C. D.
Sekam Padi................................................................................ Risalah Tanaman Padi ............................................................... Papan Partikel ............................................................................ Perekat ......................................................................................
4 6 7 18
III. METODE PENELITIAN ...................................................................
22
A. B. C. D. E. F.
Waktu dan Tempat Penelitian .................................................... Alat dan Bahan Penelitian .......................................................... Prosedur Penelitian .................................................................... Bagan Alir Penelitian ................................................................. Prosedur Pengujian.................................................................... Pengolahan Data .......................................................................
22 22 23 26 27 28
IV. HASIL DAN PEMBAHASAN ...........................................................
31
A. Hasil ........................................................................................... B. Pembahasan ..............................................................................
31 31
KESIMPULAN DAN SARAN ...........................................................
36
A. Kesimpulan ................................................................................ B. Saran .........................................................................................
36 36
DAFTAR PUSTAKA ...............................................................................
37
LAMPIRAN.............................................................................................
40
V.
DAFTAR TABEL
Nomor
Tubuh Utama
Halaman
1. Standar Nasional Indonesia (SNI 03-2105-2006) untuk Papan Partikel..............................................................................................
17
2. Nilai rata-rata Pengujian Sifat Fisik dan Mekanik Papan Partikel Sekam Padi dengan Perekat Urea Formaldehide .............................
31
Lampiran 3. Data Perhitungan Mencari Nilai Rataan Kerapatan Papan Partikel Sekam Padi .....................................................................................
42
4. Data Perhitungan Kadar Air Papan Partikel Sekam Padi ..................
42
5. Data Hasil Perhitungan Pengembangan Tebal Maksimum Papan Partikel Sekam Padi..........................................................................
42
6. Data Perhitungan Hasil Pengujian Modulus of Elastisitas (MoE) Papan Partikel Sekam Padi ..............................................................
43
7. Data Perhitungan Hasil Pengujian Modulus of Rupture Papan Partikel Sekam Padi ..........................................................................
43
8. Data Perhitungan Keteguhan rekat internal Papan Partikel Sekam Padi ..................................................................................................
43
9. Data Perhitungan Daya Kuat Cabut Sekrup (DKCS) Papan Partikel Sekam Padi ......................................................................................
44
DAFTAR GAMBAR
Nomor Tubuh Utama Halaman 1. Sekam Padi ................................................................................. 4 2.
Pola Pemotongan Contoh Uji ......................................................
25
3.
Diagram Alir Penelitian ................................................................
26
4.
Hasil Kerusaka Pada Uji Keteguhan Rekat Internal .....................
36
Lampiran 5. Proses Pengambilan Bahan Baku..................................................
45
6. Proses Pengangkutan Bahan Baku ...............................................
45
7. Proses Pengovenan Bahan Baku...................................................
46
8. Proses Penimbangan Bahan Baku.................................................
46
9. Proses Penimbangan Perekat ........................................................
47
10. Proses Pencampuran Bahan .........................................................
47
11. Proses Pemadatan Awal ................................................................
48
12. Proses Pengepressan di Mesin Kempa..........................................
48
13. Proses Pelepasan Papan Partikel ..................................................
49
14. Papan Partikel Jadi ........................................................................
49
15. Proses Penimbangan Contoh Uji ...................................................
50
16. Universal Testing Machine .............................................................
50
?
BAB I PENDAHULUAN
Saat
ini
kebutuhan
bahan
kayu
terus
mengalami
peningkatan,
meningkatnya pemakaian kebutuhan akan kayu dapat memberikan pengaruh yang kurang baik, terutama bahan kayu yang lama kelamaan akan semakin berkurang. Ketergantungan akan bahan kayu harus segera di tanggulangi, agar tidak mengurangi hasil hutan. Salah satu upaya yang dilakukan adalah dengan menggantikan kayu dengan material lain untuk kebutuhan kayu pada bidang perumahan. Penggunaan produk-produk komposit terutama papan komposit saat ini adalah sangat pesat. Penggunaan produk tersebut menggantikan fungsi kayu padat dalam beberapa aplikasi, misalnya untuk konstruksi ringan.
Hal ini
disebabkan produk komposit tersebut mempunyai sifat fisik dan mekanik yang dapat memenuhi standar yang telah dipersyaratkan. Papan komposit masih mempunyai sifat yang sangat rendah dibandingkan dengan kayu solid pada umumnya, diantaranya kekuatan mekanik dan stabilitas dimensi (Erniwati et al., 2006). Indonesia sebagai negara agraris merupakan negara produsen padi terbesar ketiga di dunia setelah Republik Rakyat Cina dan India (Anonim, 2012).
Pada tahun 2005 Indonesia memproduksi 54 juta ton padi yaitu
sebesar 9% dari total produksi dunia dan terus meningkat hingga pada tahun 2010 yang mencapai 66 juta ton (Anonim, 2010). Sebagai negara pertanian dengan makanan pokok penduduk utamanya beras, sekam padi adalah limbah pertanian yang melimpah di Indonesia (Mediastika, 2008). Sekam merupakan hasil samping saat proses penggilingan padi dan menghasilkan limbah yang
?
cukup banyak, yakni sebesar 20% dari berat gabah (Somaatmadja, 1980). Produksi sekam padi di Indonesia terus mengalami peningkatan dari tahun ke tahun dan mencapai lebih dari 13 juta ton pada tahun 2010 (Anonim, 2010; Anonim, 2011). Pada sebagian besar masyarakat, sekam padi masih belum dimanfaatkan secara maksimal. Sekam seringkali dimusnahkan dengan cara dibakar pada temperatur
tinggi yang tidak dikontrol sehingga menimbulkan polusi pada
lingkungan. Kandungan bahan pada sekam padi banyak mengandung bahan lignoselulosa sehingga menyebabkan timbulnya sifat kuat dan kaku. Berdasarkan sifat kaku dan kuat dari sekam padi ini dapat dibuat sebagai bahan komposit (Ngafwan, 2006). Pertimbangan
penggunaan sekam padi yang sekiranya potensial
untuk diaplikasikan adalah sebagai bahan pelapis elemen pembatas ruang (seperti dinding dan plafon), bukan sebagai bahan bangunan yang bersifat struktural (Templeton and sounders, 1987). Produk yang akan dibuat dari limbah sekam padi adalah isolasi panas dan peredam suara. Isolasi panas memenuhi fungsi panas sedangkan peredam suara memenuhi fungsi mekanik. Pada insulasi panas, material berpori digunakan untuk menghambat perpindahan panas
material secara
konduksi, sedangkan pada insulasi suara, energi suara yang sampai pada permukaan bahan akan diubah sebagian oleh bahan tersebut menjadi energi lain, seperti energi getar (vibrasi) atau energi panas. Oleh karena itu, bahan yang mampu menghambat laju perpindahan panas dan menyerap energi suara pada umumnya mempunyai struktur berpori atau berserat seperti sekam padi yang kandungan seratnya cukup tinggi (Mediastika, 2005).
?
Untuk mengetahui lebih banyak lagi mengenai papan partikel, maka penulis mengadakan penelitian mengenai pemanfaatan sekam padi sebagai bahan baku dalam pembuatan papan partikel, sebagai alternatif selain penggunaan kayu. Tujuan pembuatan papan partikel dengan menggunakan bahan baku sekam padi adalah untuk mengetahui sifat fisik dan mekaniknya serta kualitas papan yang dihasilkan dengan menggunakan perekat urea formaldehyde Hasil yang diharapkan dari pengamatan adalah dapat memberikan informasi tentang kemungkinan papan partikel yang berbahan dasar sekam padi dengan menggunakan perekat urea formaldehide dengan parameter yang diuji layak digunakan untuk bahan kontruksi ringan.
4
BAB II TINJAUAN PUSTAKA A. Sekam Padi 1.
Pengertian Sekam Padi Sekam padi (rice husk atau rice hull) atau kulit gabah adalah bagian terluar dari bulir padi. Sekam padi merupakan lapisan keras yang meliputi kariopsis yang terdiri dari dua belahan yang disebut lemma dan palea yang saling bertautan. Dari proses penggilingan dihasilkan 72% beras, 5% dedak dan 20-22 % sekam (Parasad, dkk.2001).
Gambar 1. Sekam padi
Sekam padi mudah dicari atau lebih sering dikategorikan sebagai bahan
sisa
diperkirakan
atau
limbah
mencapai
77,55
penggilingan.
Produksi padi Indonesia
juta ton gabah kering (Anonim , 2015),
dengan produk samping yang di hasilkan berupa sekam padi sebanyak 20% dari gabah kering. Sekam dikategorikan sebagai biomassa
yang dapat
digunakan
untuk berbagai kebutuhan seperti bahan baku industri, pakan ternak, abu
5
gosok, bahan bakar pembuatan batu bata, alas ternak, serta sebagai pupuk organik yang dapat menambah unsur hara dalam
tanah
tetapi
nilai
ekonomisnya masih rendah sehingga perlunya dicari alternatif lain yang lebih bermanfaat. 2.
Sifat Fisik Sekam Padi Sekam
padi sulit
untuk dinyalakan dan
tidak mudah
terbakar
dengan api di ruang terbuka kecuali udara ditiupkan kedalamnya. Sekam padi sangat tahan terhadap kelembaban dan dekomposisi jamur
yang
menyebabkan sekam padi sulit untuk terurai secara alami (Anonim, 2009). Sekam padi juga
merupakan bahan yang berserat tinggi yang
memiliki beberapa kandungan komposisi zat organik dan anorganik, sehingga
baik
digunakan sebagai dinding bangunan redam suara
(Sunendar dkk, 2008). 3.
Komposisi Sekam padi Menurut Anonim (2006), sekam padi memiliki komposisi sebagai berikut: a. Air
: 9,02 %
b. Protein kasar
: 3,03 %
c. Lemak
: 1,18 %
d. Serat kasar
: 35,68 %
e. Abu
: 17,71 %
f. Karbohidrat kasar
: 33,71 %
g. Karbon
: 1,33 %
h. Hidrogen
: 1,54 %
6
i. Oksigen
: 33,64 %
j. Silika
: 16,98 % B. Risalah Tanaman Padi
Menurut Perdana (2007), klasifikasi tanaman padi adalah sebagai berikut: Kerajaan
: Plantae
Divisi
: Spermatophyta
Subdivisi
: Angiospermae
Kelas
: Monocotyledoneae
Famili
: Gramineae
Genus
: Oryza
Spesies
: Oryza sativa. L
Padi termasuk dalam suku padi-padian atau poaceae. Terna semusim, berakar serabut, batang pendek, struktur batang terbentuk dari rangkaian pelepah daun yang saling menopang daun sempurna dengan pelepah tegak, daun berbentu
lanset, warna hijau muda hingga tua, berurat daun sejajar,
tertutupi oleh rambut yang pendek dan jarang, bagian bunga tersusun majemuk, tipe malai bercabang, tipe buah bulir atau kariopsis yang tidak dapat dibedakan mana buah dan mana bijinya, bentuk hampir bulat hingga lonjong, ukuranya 3 mm hingga 15 mm, tertutupi oleh palea dan lemma yang dalam bahasa seharihari disebut sekam dan struktur dominan padi yang biasa dikonsumsi yaitu jenis enduspermium. Padi merupakan salah satu tanaman budidaya terpenting dalam peradaban. Meskipun terutama mengacu pada jenis dan marga (genus) yang sama, yang biasa disebut sebagai padi liar. Padi diduga berasal dari India atau
7
Indocina dan masuk ke Indonesia dibawa nenek moyang yang migrasi dari dataran Asia sekitar 1500 SM. C. Papan Partikel 1.
Pengertian Papan Partikel Papan partikel merupakan salah satu jenis produk komposit atau panel kayu yang terbuat dari partikel-partikel kayu atau bahanbahan berlignoselulosa lainnya, yang diikat dengan perekat atau bahan pengikat
lainnya
kemudian dikempa panas (Maloney 1993). Menurut
Iskandar (2009), papan partikel adalah lembaran hasil pengempaan panas campuran partikel kayu atau bahan berlignoselulosa lainnya dengan perekat organik dan bahan lainnya. Menurut Anonim (1996), papan partikel merupakan produk yang dihasilkan dari hasil pengempaan panas antara campuran parikel kayu atau bahan berlignoselulosa lainnya dengan perekat organik serta bahan pelengkap lainnya dibuat dengan cara pengempaan mendatar dengan dua lenpengan mendatar. Menurut Sastradimadja (1998) yang mengatakan bahwa papan pa rtikel adalah satu bentuk dari papan majemuk atau papan buatan yang tersusun dari partikel/serpih kayu yang berukuran kecil atau bahan berlignoselulosa lainnya, kemudian dilakukan metode penekanan atau press baik dingin maupun panas, sehingga akan terbentuk lembaran papan dengan luas permukaan tertentu. Anonim (2000), mengatakan bahwa papan partikel adalah papan tiruan yang dibuat dari partikel/serpihan kayu atau bahan -bahan berlignoselulosa lainnya dimana bahan pengikatnya berasal dari bahan baku yang bersangkutan. Bahan lain dapat ditambahkan
8
untuk memberikan sifat-sifat khusus, seperti, kekuatan, ketahanan terhadap kelembaban air, serangan jamur, dan serangga. 2.
Klasifikasi Papan Partikel Berdasarkan komposisi lapisan papan, Haygreen dan Bowyer (1989), membagi papan ini menjadi dua golongan, yaitu: a. Papan partikel homogeny (single layer board), yaitu papan partikel yang terdiri dari satu lapis, susunannya tidak ada perbedaan ukuran partikel antara permukaan, tengah maupun belakang. b. Papan partikel berlapis banyak (multiple layer board), yaitu papan partikel yang berlapis banyak dan tersusun atas partikel yang mempunyai ukuran bervariasi pada bagian permukaan, tengah dan belakang. Menurut Maloney (1993), membagi kerapatan papan partikel menjadi beberapa bagian, diantaranya: a. Papan partikel berkerapatan rendah (low density particleboard), yaitu 3
papan yang berkerapatan kurang dari 0,4 gr/cm . b. Papan partikel berkerapatan sedang (medium density particleboard), yaitu papan mempunyai kerapatan antara 0,4-0,8 gr/cm3. c. Papan partikel berkerapatan tinggi (high density particleboard), yaitu papan yang berkerapatan lebih dari 0,8 gr/cm3. Selanjutnya
Maloney
(1993) menyatakan bahwa dibandigkan
dengan kayu asalnya, papan partikel mempunyai beberapa kelebihan seperti: 1. Papan partikel bebas mata kayu, pecah dan retak. 2. Ukuran dan kerapatan papan partikel dapat disesuaikan dengan kebutuhan.
9
3. Tebal dan kerapatan seragam serta mudah untuk dikerjakan. 4. Mempunyai sifat isotropis. 5. Sifat dan kualitasnya dapat diatur. 6.
Jenis Papan Partikel Ada beberapa jenis papan partikel yang ditinjau dari beberapa segi, yaitu sebagai berikut (Iskandar, 2009): a. Bentuk Papan partikel umumnya berbentuk datar dengan ukuran relatif panjang, relatif lebar, dan relatif tipis sehingga disebut panel. Ada papan partikel yang tidak datar (papan partikel lengkung) dan mempunyai bentuk
tertentu
tergantung pada acuan (cetakan) yang dipakai seperti
bentuk kotak radio. b. Pengempaan Cara pengempaan dapat secara mendatar atau secara ekstrusi. Cara
mendatar ada yang kontinyu dan tidak kontinyu. Cara kontinyu
berlangsung melalui ban baja
yang
menekan
pada
saat
bergerak
memutar. Cara tidak kontinyu pengempaan berlangsung pada lempeng yang bergerak vertikal dan banyaknya celah (rongga atau lempeng) dapat satu atau lebih. Pada cara ekstrusi, pengempaan berlangsung kontinyu diantara dua lempeng yang statis. Penekanan dilakukan oleh semacam piston yang bergerak vertical atau horizontal. c. Kerapatan Ada tiga kelompok kerapatan papan partikel, yaitu rendah, sedang dan tinggi. Terdapat perbedaan batas antara setiap kelompok tersebut, tergantung pada standar yang digunakan.
10
d. Kekuatan (sifat mekanis) Pada prinsipnya sama seperti kerapatan, pembagian berdasarkan kekuatan pun ada yang rendah, sedang, dan tinggi. Terdapat perbedaan batas antara setiap macam (tipe) tersebut, tergantung pada standar yang digunakan. Ada standar yang menambahkan persyaratan beberapa sifat fisis. e. Macam perekat Macam perekat yang dipakai mempengaruhi ketahanan papan partikel terhadap pengaruh kelembaban, yang selanjutnya menentukan penggunaanya. Ada standar
yang
membedakan berdasarkan
sifat
perekatnya, yaitu interior dan eksterior. Ada standar yang memakai penggolongan
berdasarkan
macam perekat,
yaitu
tipe U (urea
formaldehide atau yang setara), tipe M (melamin urea formaldehida atau yang setara) dan tipe P (phenol formaldehida atau yang setara). Untuk yang
memakai
berdasarkan
perekat
emisi
urea
formaldehide
formaldehida dari
papan
ada
yang membedakan
partikelnya,
yaitu yang
rendah dan yang tinggi atau yang rendah, sedang dan tinggi. f.
Susunan partikel Pada
saat
membuat
partikel
dapat
dibedakan
berdasarkan
ukurannya, yaitu halus dan kasar. Pada saat membuat papan partikel kedua
macam
partikel tersebut dapat disusun tiga macam sehingga
menghasilkan papan partikel yang berbeda yaitu papan partikel homogen (berlapis tunggal), papan partikel berlapis tiga dan papan partikel berlapis bertingkat.
11
g. Arah partikel Pada saat membuat hamparan, penaburan partikel (yang sudah dicampur sama perekat) dapat dilakukan secara acak (arah serat partikel tidak diatur) atau arah serat diatur, misalnya sejajar atau bersilangan tegak lurus. Untuk yang disebutkan terakhir dipakai partikel yang relatif panjang, biasanya berbentuk untai sehingga disebut papan untuk terarah. h. Penggunaan Berdasarkan
penggunaan
yang
berhubungan
dengan
beban,
papan partikel dibedakan menjadi papan partikel penggunaan umum dan papan partikel struktural (memerlukan kekuatan yang lebih tinggi). Untuk
membuat
penggunaan
mebel, pengikat
umum.
Untuk
dinding
dipakai
papan
partikel
membuat komponen dinding, peti kemas
dipakai papan partikel struktural. i.
Pengolahan Ada
dua
pengolahannya,
macam
papan
yaitu pengolahan
partikel
primer
berdasarkan
dan
pengolahan
tingkat sekunder.
Papan partikel pengolahan primer adalah papan partikel yang dibuat melalui
proses
pengempaan
pembuatan
yang
partikel, pembentukan hamparan
menghasilkan
papan
partikel. Papan
dan
partikel
pengolahan sekunder adalah pengolahan lanjutan dari papan partikel pengolahan primer misalnya dilapisi venir indah, dilapisi kertas aneka corak. 7.
Faktor-Faktor Yang Mempengaruhi Mutu Papan Partikel Menurut Sutigno (1994), faktor yang mempengaruhi mutu papan partikel adalah sebagai berikut:
12
a. Berat jenis partikel Perbandingan antara kerapatan atau berat jenis papan partikel dengan berat jenis kayu harus lebih dari satu, yaitu sekitar 1,3 agar mutu papan partikelnya baik. Pada keadaan tersebut proses pengempaan berjalan optimal sehingga kontak antar partikel baik. b. Zat ekstraktif partikel Partikel yang berminyak akan menghasilkan papan partikel yang kurang baik dibandingkan dengan papan partikel dari kayu yang tidak berminyak. Zat ekstraktif semacam ini akan mengganggu proses perekatan. c. Jenis partikel Jenis kayu (misalnya Meranti Kuning) yang kalau dibuat papan partikel emisi folmaldehidenya lebih tinggi dari jenis lain (misalnya Meranti Merah). Masih diperdebatkan apakah karena pengaruh warna atau pengaruh zat ekstraktif atau pengaruh keduanya. d. Campuran jenis kayu Keteguhan lentur papan partikel dari campuran jenis kayu ada diantara keteguhan lentur papan partikel jenis tunggalnya, karena itu papan partikel struktural lebih baik dibuat dari satu jenis kayu daripada dari campuran jenis kayu. e. Ukuran partikel Papan partikel yang dibuat dari tatal akan lebih dari pada yang dibuat dari serbuk karena ukuran tatal lebih besar
daripada serbuk.
Karena itu, papan partikel struktural dibuat dari partikel yang relatif panjang dan relatif lebar.
13
f.
Kulit kayu Makin
banyak
kulit
kayu
dalam
partikel
kayu
sifat papan
partikelnya makin kurang baik karena kulit kayu akan mengganggu proses perekatan antar partikel. Banyaknya kulit kayu maksimum sekitar 10%. g. Perekat Macam partikel yang dipakai mempengaruhi sifat papan partikel. Penggunaan perekat eksterior akan menghasilkan papan partikel eksterior sedangkan pemakaian perekat interior akan menghasilkan papan partikel interior. Walaupun
demikian,
masih
mungkin
terjadi
penyimpangan,
misalnya karena ada perbedaan dalam komposisi perekat dan terdapat banyak sifat papan partikel. Sebagai contoh, penggunaan perekat urea formaldehide yang kadar
formaldehidenya tinggi akan menghasilkan
papan partikel yang keteguhan lentur dan keteguhan rekat internal lebih baik tetapi emisi formaldehidenya lebih jelek. h. Pengolahan Proses produksi papan partikel berlangsung secara
otomatis.
Walaupun demikian, masih mungkin terjadi penyimpangan yang dapat mengurangi mutu papan partikel. Sebagai contoh, kadar air hamparan (campuran partikel dengan perekat) yang optimum adalah 10
14%, bila
terlalu tinggi keteguhan lentur dan keteguhan rekat internal papan partikel akan menurun. Beberapa fakor kunci yang dapat mempengaruhi terhadap kualitas papan komposit antara, bentuk partikel, kerapatan papan, profil kerapatan papan, jenis dan kadar serta distribusi perekat, kondisi pengempaan (suhu,
14
tekanan dan waktu), kadar air adonan, kontruksi papan, particle aligment dan kadar air partikel (Maloney 1993). Dalam proses pembuatan papan komposit,
semakin
tinggi
suhu
kempa
yang
digunakan,
maka
pengembangan tebal dan daya serap air semakin rendah, keteguhan lentur dan kekuatan tarik sejajar permukaan semakin tinggi. Semakin tinggi kadar perekat yang digunakan maka kualitas papan komposit yang dihasilkan semakin baik. Namun karena pertimbangan biaya produksi, biasanya kadar perekat yang digunakan pada industri papan komposit tidak lebih 12 % (Massijaya 1997). Menurut Tsoumis (1991), sifat mekanis kayu dipengaruhi oleh kekuatan kayu dalam menahan beban dari luar. Sifat ini dipengaruhi oleh kelembaban, kerapatan, suhu dan kerusakan kayu. Sifat fisik -mekanik papan partikel meliputi kerapatan,kadar air, penyerapan air, pengembangan tebal, modulus lentur dan keteguhan rekat internal. Menurut Widarmana
(1977),
kerapatan adalah suatu ukuran
kekompakan partikel dalam lembaran. Makin tinggi kerapatan papan partikel yang akan dibuat semakin besar tekanan yang digunakan pada saat pengepressan. Sedangkan kadar air papan partikel akan semakin rendah dengan semakin meningkatnya suhu dan banyaknya perekat yang digunakan, karena ikatan ikatan antar partikel akan semakin kuat sehingga air sukar untuk masuk kedalam papan partikel. Nilai pengembangan tebal yang paling kecil merupakan pengem bangan yang paling baik karena dapat mengantisipasi meresapnya air kedalam papan melalui pori-pori partikel dan ruang kosong antar partikel secara perlahan (Widiyanto, 2002).
15
8.
Sifat Fisik Mekanik Papan partikel Adapun Sifat-Sifat daripada papan partikel yang dibagi menjadi 2 bagian, yaitu: a. Sifat Fisik 1) Kadar Air Kadar air kayu menunjukan banyaknya air yang terdapat dalam kayu, dinyatakan dalam persen terhadap berat kayu kering. (Anonim, 1999). 2) Kerapatan Menurut Sastradimadja (1998). Kerapatan papan partikel yang dihasilkan pengaruhi oleh jumlah partikel per satuan, semakin sedikit partikel kayu untuk ketebalan yang sama akan memberi kerapatan papan yang rendah. 3) Pengembangan Tebal Pengembangan
tebal
bertujuan
untuk
mengetahui
adanya
perubahan tebal akibat adanya sejumlah volume air yang masuk setelah dilakukan perendaman dalam periode tertentu (Sastradimidja, 1998). b. Sifat Mekanika 1) Keteguhan Patah (MoR) Menurut pernyataan Sastradimadja (1998), bila gaya yang diberikan pada suatu benda diperbesar sampai tercapai batas maksimum, maka akan terjadi perubahan dimensi pada kayu tersebut, artinya bahwa apabila beban atau gaya tersebut dilepas kayu tidak akan kembali pada keadaan semula dan bila diteruskan akan terjadi kepatahan atau Modulus of Rupture (MoR).
16
2) Keteguhan Lentur (MoE) Menurut pernyataan Sastradimadja (1998), kayu dapat diberikan beban atau gaya mencapai batas maksimum akan terjadi perubahan dimensi tetapi apabila beban atau gaya tersebut dilepas maka kayu akan kembali ke keadaan semula atau Modulus of Elastisity (MoE). 3) Keteguhan Rekat Internal Pengujian keteguhan rekat internal merupakan upayapengendal iankualitas yang penting karena menunjukan kesempurnaan pencampa ran,
pembentukan, dan pengempresaan
papan
partikel,
serta
merupakan ukuran terbaik tentang kualitas pembuatan suatu papan partikel karena menunjukan ikatan antara papan partikel (Anonim, 1999). 4) Daya Kuat Cabut Sekrup Pada dasarnya semua kayu atau bahan yang terbuat dari kayu apabila akan dibuat barang jadi harus disambung dengan suatu benda antara lain dengan sekrup atau paku. Tentu saja untuk mengetahui daya pegang sekrup atau paku harus dilakukan suatumetodepengujia ntertentu. Nilai daya kuat cabut sekrup atau paku dipengaruhi oleh ku alitas papan partikel dan tipe sekrup atau paku yang dipakai (Anonim, 1999). 9.
Standar Papan Partikel Papan partikel selain mempunyai klasifikasi juga mempunyai standar, baik standar internasional (yang ditetapkan oleh suatu negara tertentu), ataupun standar papan partikel berdasarkan Standar Nasional Indonesia (SNI 03-2105-2006), dapat dilihat pada Tabel 1.
17
Tabel 1. Standar Nasional Indonesia (SNI 03-2105-2006) untuk Papan Partikel No Sifat Fisik Mekanik Persyaratan Sifat Fisik a. Kadar Air Maks 14 % 1 3 3 b. Kerapatan 0,40 gr/cm - 0,90 gr/cm c. Pengembangan Tebal Maks 20% Sifat Mekanik a. Keteguhan Lentur (MoE) 17500 - 35100 kg/cm2 2 b. Keteguhan Patah (MoR) Min 100 kg/cm 2 2 c. Keteguhan Rekat Internal > 3 kg/cm d. Daya Kuat Cabut Skrup > 40 kg
10. Proses Pembuatan Papan Partikel Menurut Yusuf (1999), proses pembuatan papan partikel secara garis besar dibagi dalam beberapa tahapan, yaitu: a. Pembuatan Partikel Partikel dapat dibuat dengan dua cara, yaitu: 1) Secara pemotongan dengan alat khusus, sehingga terbentuk partikel (flakes) dengan ukuran tertentu. 2) Secara pecahan atau sobekan, kadang-kadang dikombinasi dengan pemotongan. b. Penyaringan Penyaringan ini dimaksudkan untuk memisah-misahkan partikel yang kasar sedang dan halus. c. Pengeringan Pengeringan dilakukan agar dapat diperoleh daya rekat dan kerapatan yang baik. Pengeringan ini dilakukan sampai mencapai berat konstan. d. Percampuran partikel dengan perekat Proses
pencampuran
perekat
dengan
partikel
dilakukan
dengan
menggunakan alat berupa drum yang dilengkapi semprotan (sprayer).
18
e. Pembentukan lembaran Partikel dimasukkan kedalam drum kemudian disemprot dengan perekat menggunakan sprayer, hingga partikel dan perekat bercampur merata. Kemudian dimasukkan kedalam cetakan dan diberi tekanan awal. Selanjutnya dimasukkan ke dalam mesin presser panas tekanan hingga sebatas sesuai dengan yang diinginkan ketebalanya yaitu 0,9 cm dengan suhu berkisar 1200 C
150 0 C selama kurang lebih 3 menit kemudian
panasnya dimatikan dan dilanjutkan dengan tekanan selama 24 jam. Lembaran papan yang dibuat sebanyak 10 sample yang meliputi 5 sample untuk masing masing perlakuan. f. Pengkondisian Papan setelah dikeluarkan dari presser kemudian diletakkan kedalam ruangan dengan suhu kamar hingga mencapai kadar air kesetimbangan, sebaiknya digunakan ruangan yang ber-AC. g. Pembuatan contoh uji Papan partikel yang telah mencapai kadar air kesetimbangan, dibuat contok uji sesuai dengan parameter yang akan diuji. D. Perekat 1.
Pengertian Perekat Perekat (adhesive) adalah suatu zat atau bahan yang memiliki kemampuan untuk mengikat
dua benda melalui ikatan permuk aan
(Forest Product Societ y, 1999). Berdasarkan unsur kimia utama, Blomquist et al. (1983), membagi perekat menjadi dua kategori yaitu :
19
a. Perekat alami 1) Berasal dari tumbuhan, seperti pati, dextrins (turunan pati) dan getah tumbuh-tumbuhan. 2) Berasal dari protein, seperti kulit, tulang, urat daging, albumin, darah, susu dan soybean meal (termasuk kacang tanah dan protein nabati. seperti biji-bijian pohon dan biji durian). 3)
Berasal dari material lain, seperti aspal, shellac (lak), karet, sodium silikat, magnesium oksiklorida dan bahan anorganiknya.
b. Perekat sintetis 1)
Perekat thermoplastis yaitu resin yang akan kembali menjadi lunak ketika
dipanaskan
dan
mengeras
didinginkan. Contohnya polivinil alkohol
kembali
ketika
(PVA), polivinil asetat
(PVAc), kopolimer, ester dan eter selulosa, poliamida, polistirena, polivinil butiral dan polivinil formal. 2)
Perekat
thermoset
yaitu resin yang mengalami atau telah
mengalami reaksi kimia dari pemanasan, katalis, sinar ultraviolet, dan tidak dapat kembali ke bentuk semula. Contohnya melamin,
urea,
phenol, resorsinol, furfuril, alkohol, epoksi, poliurethan,
poliester tidak jenuh. Urea, melamin, phenol, dan resorsinol akan menjadi perekat setelah direaksikan dengan formaldehida (HCHO). 3)
Synthetic elastomers adalah perekat yang pada suhu kamar bisa direnggangkan seperti neoprena, nitril dan polisulfida.
2.
Perekat Urea Formaldehide Perekatan
partikel
pada
umumnya
dilaksanakan
menggunakan Urea Formaldehide untuk bagian dalam
dengan
(interior) papan
20
partikel seperti mabel, lantai, dinding penyekat dan Phenol Formaldehide (PF) digunakan untuk papan partikel struktural (Tsoumis, 1991). Urea Formaldehide termasuk salah satu perekat thermosetting hasil reaksi
kondensasi
dan polimerisasi
antara urea
dan formaldehide.
Rendahnya harga perekat, cepatnya pengerasan dibandingkan dengan (PF) pada suhu yang sama, dan pembentukan garis retak (glue line) yang tak berwarna menyebabkan perekat ini menguntungkan dalam industri kayu lapis dan papan partikel (Achmadi, 1990). Menurut Hiziroglu (2007), mengemukakan beberapa karakteristik dari perekat Urea-Formaldehide (CH4 N20CH20) diantaranya : a. Berat jenis : 1,27 % b. Solid content : 64,8 % Penggunaan perekat urea formaldehyde terbatas pada produk seperti panel kayu lapis hias, papan partikel pada bagian lantai atau papan serat untuk mebel serta aplikasi interior. Kerugian perekat UF adalah tidak tahan cuaca. Rendahnya keawetan ini disebabkan karena adanya gugus amida yang mudah terhidrolisis. Karena itu, perekat UF lebih sesuai untuk perekat mebel dan kegunaan lain di dalam ruangan. Kelemahan utama UF
adalah mudah terhidrolisis
sehingga terjadi kerusakan pada ikatan hidrogennya oleh kelembaban atau basa serta asam kuat khususnya pada suhu diatas 40 0 C kerusakan perekat dipercepat sedangkan diatas 600 C kerusakan sangat cepat. Kebutuhan perekat UF untuk pembuatan papan partikel berkisar 612%. Dengan perekat UF, suhu inti pada lembaran papan partikel sekitar 0
100 C diperlukan untuk pematangan akhir.
22
BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian 1.
Waktu Penelitian Penelitian ini dimulai pada bulan Mei 2016 sampai dengan bulan Juli 2016 dengan tahapan mulai dari persiapan penelitian, pengambilan bahan baku, pelaksanaan kegiatan penelitian, analisis data dan pelaporan hasil akhir penelitian.
2.
Tempat Penelitian Penelitian ini dilaksanakan di Laboratorium Rekayasa Pengolahan Kayu kemudian dilanjutkan di Laboratorium Sifat Kayu dan Analisis Produk Hasil Hutan Politeknik Pertanian Negeri Samarinda. B. Alat dan Bahan Penelitian
1.
Alat Penelitian Mesin kempa, oven, drum pencampur bahan, timbangan, sprayer, mesin mixer, gelas ukur, cetakan kayu ukuran 32 x 32 cm, mall besi ukuran 32 x 32 x 0,8 cm, plat besi ukuran 35 x 35 cm, waterbath, universal testing machine, desikator, micro caliper, Perekat epoxy, obeng, mesh ukuran 50, alat tulis menulis, kalkulator, lesung, skrup, termometer dan kamera
2.
Bahan Penelitian. Sekam padi dan perekat urea formaldehide
23
C. Prosedur Penelitian 1.
Tahap persiapan bahan baku a. Sekam padi 1) Pembuatan papan partikel ini menggunakan sekam padi sebagi bahan baku utama dalam penelitian ini. 2) Pengambilan bahan baku sekam padi dilakukan di
pabrik
penggilingan padi di daerah daerah setrat 9 Palaran dan diangkut kelokasi pembuatan papan partikel yaitu di area kampus Politeknik Pertanian Negeri Samarinda. 3) Sekam padi yang akan digunakan sebagai bahan baku pembuatan papan partikel harus ditumbuk terlebih dahulu agar sekam terbelah dan kemudian disaring dengan mesh untuk memisahkan ukuran partikel dan agar debu pada sekam hilang, kemudian sekam harus dikeringkan terlebih dahulu menggunakan oven dengan suhu 103 ± 0
2 C selama 24 jam. b. Perekat 1) Pada pembuatan papan partikel sekam padi ini menggunakan urea formaldehide sebagai perekatnya. 2) Perekat diambil langsung di perusahaan kayu lapis yaitu PT RIMBA RAYA LESTARI dimana perekatnya sudah dalam bentuk cair yang bisa digunakan langsung dalam pembuatan papan partikel ini. 2.
Tahapan Pencampuran Bahan Baku Partikel dan perekat ditimbang sesuai dengan kebutuhan yang didasarkan pada kadar perekat dan kerapatan papan partikel yang
24
dikehendaki, dalam penelitian ini partikel dan perekat menggunakan perbandingan 80% : 20%. Kemudian partikel sekam dimasukkan kedalam drum pengaduk sedangkan perekat disemprotkan ke dalam drum pengaduk dengan menggunakan alat sprayer hingga kemudian partikel dan perekat tercampur merata di dalamnya. 3.
Tahap Pembuatan Lembaran Papan Campuran bahan partikel dan sekam yang sudah tercampur secara merata kemudian dimasukkan kedalam alat pencetak yang sudah diberi alas plat besi, mall besi dan alat cetakan kayu sebelumnya, kemudian masukkan campuran kedalam cetakan, pastikan campuran tersebar secara merata dalam cetakan agar papan yang dihasilkan mempunyai kerapatan yang seragam, kemudian campuran dipadatkan dengan cara ditekan. Setelah itu cetakan kayu dilepas dan hasil cetakan diberi penutup lagi pada sisi atasnya dengan plat besi.
4.
Pengempaan Penegempaan yang dilakukan pertama kali adalah pengempaan panas yaitu dengan cara mat yang telah siap dicetak, kemudian dimasukkan kedalam mesin press hingga ketebalan 1 cm dengan suhu berkisar antara 800 C
100 0 C selama 10 menit kemudian mesin kempa dimatikan dan
papan dibiarkan didalam mesin kempa selama 20 menit hingga suhu menurun. Setelah itu papan dikeluarkan dari mesin kempa dan didiamkan pada suhu ruangan selama 5 menit baru kemudian papan dilepas dari mall besi.
25
5.
Pengkondisian Pengkondisian dilakukan selama 7 hari pada suhu kamar supaya kadar air pada lembaran papan partikel seragam pada seluruh bagian papan partikel, selain itu pengkondisian berfungsi untuk melepaskan tegangan pada
papan
setelah
mengalami
pengempaan
dan
sekaligus
juga
memungkinkan proses perekatan lebih sempurna. 6.
Pemotongan Contoh Uji Papan partikel yang telah dilakukan pengkondisian
kemudian
dibuat contoh uji dengan parameter yang akan diuji yang sesuai standar . Cara pengambilan contoh uji dapat dilihat pada gambar dibawah:
Gambar 2. Pola Pemotongan Contoh Uji Keterangan : 1.
Contoh uji kerapatan dan kadar air (10 cm x 10 cm)
2.
Contoh uji pengembangan tebal (5 cm x 5 cm)
3.
Contoh uji MoE dan MoR (5 cm x 20 cm)
4.
Contoh uji kekuatan rekat internal (5 cm x 5 cm)
5.
Contoh uji kuat cabut skrup (5 cm x 10 cm)
26
D. Bagan Alir Penelitian Untuk lebih jelasnya bagaimana urutan pembuatan hingga pengujian papan partikel dari sekam padi, dapat dilihat pada bagan alir dibawah ini:
Persiapan Bahan Baku
Mulai
Pengeringan
Pencampuran Bahan
Sekam padi + UF
Pencetakan Pengempaan Pengkondisian Pemotongan contoh uji Pengujian
Kerapatan
Kadar Air
Pengembangan Tebal
MoE dan MoR
Pengolahan Data
Selesai
Gambar 3. Diagram Alir Penelitian
Rekat Internal
Cabut Skrup
27
E. Prosedur Pengujian 1.
Kadar Air Pengujian kadar air dilakukan degan menimbang masing- masing contoh uji untuk mendapatkan berat kering udara (BKU), kemudian dimasukkan kedalam oven dengan suhu 103 ± 20 C selama 24 jam, setelah dioven kemudian sampel dimasukkan kedalam desikator selama 15 menit, kemud ian dikeluarkan dan ditimbang.
2.
Kerapatan Pengujian kerapatan dilakuk an pada kondisi kering tanur dan volome kering tanur, sampel ditimbang beratnya, lalu diukur panjang, lebar dan
tebalnya
untuk
menentukan volumenya. Kemudian angka yang
diperoleh dari masing-masing pengukuran contoh uji dirata-ratakan. 3.
Pengembangan Tebal Uji ini berhubungan dengan uji daya serap air, Contoh uji diukur ketebalannya pada dua sisi sampel pada kondisi kering udara. Kemudian contoh uji direndam dalam waterbath pada suhu kamar selama beberapa waktu tertentu hingga sample tenggelam dalam air. Kemudian contoh uji diukur lagi ketebalannya pada kedua sisi sampel uji. Kemudian angka yang diperoleh dari masing-masing pengukuran contoh uji dirata-ratakan.
4.
Pengujian Keteguhan Lentur (MoE) dan Keteguhan Patah (MoR) Pengujian
Modulus of Elastisitas dan Modulus of Rupture ini
dilakukan dengan menggunakan Universal Testing Machine. Dengan jarak sangga 15 kali tebal. Kemudian beban diberikan sampai beban maksimum hingga contoh uji patah.
28
5.
Pengujian Keterangan Rekat Internal Pada pengujian ini adalah untuk melihat kekuatan internal, dengan cara contoh uji direkatkan pada dua buah blok besi menggunakan perekat epoxy hingga contoh uji dihimpit dengan kedua blok besi dan dibiarkan mengering selama 24 jam agar proses perekatan sempurna. Setelah mengering kedua blok ditarik dengan menggunakan universal testing machine, yang satu ditarik ke atas dan yang satunya ditarik ke bawah.
6.
Penentuan Kuat Cabut Sekrup Sekrup yang digunakan berdiameter 0,31 cm, panjang 1,3 cm dimasukkan kedalam contoh uji dengan menggunakan obeng hingga kedalaman 0,8 cm. Proses pengujian dilakukan dengan dengan cara contoh uji diklem pada sisi kanan dan kiri dan sekrup ditarik ke atas hingga beban maksimum sampai skrup tercabut. Besarnya beban maksimum yang tercapai dalam satuan kilogram. F. Pengolahan Data Pada pengujian sifat fisik dan mekanik papan partikel dari bahan baku
sekam padi dengan menggunakan perekat urea formaldehide ini pengolahan datanya dilakukan dengan mengitung nilai rataan pengujian tersebut. 1.
Nilai kadar air dihitung dengan rumus:
Keterangan: KA
= Kadar air (%)
BA
= Berat awal (gram)
BKO = Berat kering oven (gram)
29
2.
Kerapatan sampel papan partikel dihitung dengan rumus:
Dimana: : kerapatan (gr/cm 3) m : massa sampel (gr) v 3.
: volume sampel (cm)
Pengembangan tebal dapat dihitung dengan rumus:
Keterangan: T0 : Tebal awal (cm) T1 : Tebal setelah direndam (cm) 4.
Pengujian Modulus of Elastisitas dihitung dengan rumus: 2
MoE (kg/cm )
Keterangan: P = Selisih beban (kg) y = Perubahan defleksi (cm) L = Jarak sangga (cm) b = Lebar contoh uji (cm) h = Tebal contoh uji (cm)
30
5.
Modulus of Rupture dapat dihitung dengan menggunakan rumus:
Keterangan: P = Beban maksimum (kg) L = Jarak sangga (cm) b = Lebar contoh uji (cm) h = Tebal contoh uji (cm) 6.
Nilai kekuatan rekat internal dapat di hitung dengan menggunakan rumus:
Keterangan: Pmax : Beban maximum (kg) A
: Luas permukaan contoh uji (cm)
??
BAB IV HASIL DAN PEMBAHASAN A. Hasil Dari hasil penelitian dan pengolahan data dari papan partikel yang dibuat dari bahan sekam padi dengan menggunakan perekat urea formaldehide, pada sifat fisik meliputi kadar air, kerapatan dan pengembangan tebal, sedangkan pada sifat mekanik meliputi MoE, MoR, keteguhan rekat internal, serta daya kuat cabut skrup diperoleh nilai rata-rata dari masing-masing pengujian, yang dapat dilihat pada tabel dibawah ini: Tabel 2. Nilai Rata-rata Pengujian Sifat Fisik dan Mekanik Papan Partikel Sekam Padi dengan Perekat Urea Formaldehide No Parameter Pengujian Rata-rata SNI SIFAT FISIK a. Kadar Air (%) 10,56 Maks 14% 1 b. Kerapatan (g/cm3) 0,62 0,40 0,90 g/cm3 c. Pengembangan Tebal (%) 19,71 Maks 20% SIFAT MEKANIK a. Keteguhan Lentur (MoE) 2 (kg/cm²) 21764,56 17500-35100 kg/cm b. Keteguhan Patah (MoR) 2 (kg/cm²) 53,58 Min 100 kg/cm2 c. Keteguhan Rekat Internal (kg/cm²) 1,25 > 3kg/cm2 d. Daya Kuat Cabut Skrup (kg) 26 > 40 kg
B. Pembahasan Untuk
mengetahui
data
perhitungan
masing-masing
parameter
sebenarnya adalah sebagai berikut: 1.
Kadar Air Pengujian kadar air papan partikel bertujuan untuk mengetahui besarnya kadar air dari papan tersebut. Menurut Anonim (1999), kadar air kayu menunjukan banyaknya air yang terdapat dalam kayu, dinyatakan dalam persen terhadap berat kayu kering.
??
Besar nilai kadar air dari papan partikel sekam yang diteliti memberikan angka rataan sebesar 10,56%. Dari hasil pengujian kadar air papan partikel dari bahan baku sekam padi tersebut
sudah memenuhi
kriteria standar SNI yang dipersyaratkan yaitu 14%. Berdasarkan (Anonim, 2009) yang mengatakan bahwa sekam padi sangat tahan terhadap kelembaban dan dekomposisi jamur yang menyebabkan sekam padi sulit untuk terurai secara alami. 2.
Kerapatan Berdasarkan pengelompokkan kerapatan papan partikel
menurut
Maloney (1993), bahwa kerapatan papan partikel yang terbuat dari sekam padi ini tergolong papan partikel berkerapatan sedang yang berada diantara 0,40
0,80 g/cm 3. Dimana jika dibawah 0,4 g/cm3 tergolong pada kerapatan
rendah sedangkan jika diatas 0,8 g/cm3 tergolong pada kerapatan tinggi. Hal ini sudah berdasarkan standar SNI dimana kerapatan yang dipersyaratkan berkisar antara 0,40
3
0,90 g/cm . Sementara papan partikel yang terbuat
dari sekam padi rata-ratanya adalah 0,62 g/cm3. Menurut Sastradimadja (1998), kerapatan papan partikel yang dihasilkan dipengaruhi oleh jumlah partikel per satuan, semakin sedikit partikel kayu untuk ketebalan yang sama akan memberi kerapatan papan yang rendah. 3.
Pengembangan Tebal Pengembangan tebal merupakan satu diantara pengujian sifat fisik pada papan partikel, karena nilai pengembangan tebal ini untuk menilai seberapa jauh pengaruh air terhadap perubahan ukuran dimensi papan partikel. Menurut
Sastradimidja (1998), pengembangan tebal bertujuan
untuk mengetahui adanya perubahan tebal akibat adanya sejumlah volume
??
air yang masuk setelah dilakukan perendaman dalam periode tertentu. Papan partikel jenis ini praktiknya dalam penggunaan sehari-hari sangatlah rentan terhadap kadar air jika dibandingkan dengan papan tiruan lainnya. Dari hasil penelitian didapatkan bahwa pengembangan tebal rata-rata adalah 19,71 %. Hasil tersebut telah memenuhi standar SNI papan partikel yang dipersyaratkan yaitu sebesar 20%. Hal ini dikarenakan adanya faktor atau hubungan dengan proses absorpsi air, semakin rendah nilai kerapatan suatu bahan maka semakin mudah air masuk kedalam struktur serat bahan tersebut, sehingga semakin banyak air yang diserap maka semakin besar pula perubahan dimensi yang dihasilkan. 4.
Keteguhan Lentur (MoE) dan Keteguhan Patah (MoR) Uji Modulus of
Elastisitas (MoE) dan Modulus of Rupture (MoR)
merupakan uji mekanik dari pada papan. Uji ini menunjukkan seberapa besar kekuatan suatu benda bisa menerima beban dari luar. Hal ini sangatlah penting untuk menetapkan peruntukan benda yang diuji sesuai dengan sifat kekuatannya. MoE dan MoR memiliki hubungan pengujian yang erat dan tak terpisahkan, karena papan atau kayu yang
MoR nya tinggi
selalu diikuti dengan MoE yang tinggi pula. Artinya bahwa kayu atau papan yang kuat memiliki MoE yang tinggi demikian juga sebaliknya kayu atau papan yang memiliki MoE tinggi memiliki kekuatan yang kuat. Hal tersebut berbeda dengan penelitian ini, dimana hasil pengujian dan perhitungan keteguhan lentur (MoE) dan keteguhan patah (MoR) papan partikel diperoleh nilai rataan MoE sebesar
21764,56 (kg/cm²) dan MoR sebesar
(kg/cm²). Dimana nilai MoE tersebut ditetapkan tetapi
53,57
telah memenuhi standar SNI yang
tidak diikuti dengan MoR yang nilainya masih dibawah
??
standar SNI yang dipersyaratkan. Hal ini
dikarenakan papan partikel dari
sekam padi memiliki kerapatan yang sedang. Dilihat dari hasil MoE dan MoR papan partikel sekam padi ini, maka papan partikel ini lebih cocok peruntukannya pada penggunaanya yang bersifat non struktural, seperti plafon, penyekat ruangan dan sebagai peredam suara. 5.
Keteguhan rekat internal Uji ini merupakan pengendalian kualitas yang penting karena menunjukkan kesempurnaan pencampuran, pembentukan, dan pegepres san papan partikel, serta merupakan ukuran terbaik tentang kualitas pembuatan papan partikel karena menunjukkan ikatan antar partikel (Anonim, 1999). Berdasarkan hasil pengujian papan partikel menunjukkan nilai keteguhan internal sebesar 1,25 (kg/cm²), dimana nilai tersebut masih dibawah standar SNI yang dipersyaratkan yaitu > 3 kg/cm 2. Hal ini diduga perekat epoxy yang dilaburkan pada kedua permukaan contoh uji kurang banyak, sehingga kekuatan perekat epoxy kurang mengikat pemukaan antara besi dan papan partikel. Untuk lebih jelasnya dapat dilihat pada gambar berikut ini:
Gambar 4. Hasil Kerusakan Pada Uji Keteguhan Rekat Internal
??
6.
Daya Kuat Cabut Skrup Rata-rata
nilai
kuat
cabut skrup papan partikel yang diperoleh
adalah sebesar 26,00 kg. Dari hasil tersebut juga belum mencapai standar SNI
yang
dipersyaratkan
yaitu
minimal 40 kg. Hal ini terjadi karena
semakin rendahnya kerapatan papan partikel maka semakin rendah pula kuat pegang sekruppada papan partikel. Berdasarkan Anonim (1999), nilai daya kuat cabut sekrup atau paku dipengaruhi oleh kualitas papan partik el dan tipe sekrup atau paku yang dipakai.
??
BAB V KESIMPULAN DAN SARAN A. Kesimpulan 1.
Sekam padi dapat menjadi alternatif bahan baku pembuatan papan partikel.
2.
Papan partikel yang dibuat dengan bahan baku sekam padi, pada uji sifat fisiknya, semua
sudah
memenuhi
standar
SNI
yang
dipersyaratkan
sedangkan untuk uji sifat mekaniknya sebagian besar belum memenuhi standar SNI yang dipersyaratkan. Hal ini dikarenakan papan partikel sekam padi memiliki kerapatan sedang. Berdasarkan Maloney (1993), kerapatan papan partikel yang terbuat dari sekam padi ini, memiliki kerapatan sedang . 3.
Kerapatan sangat
mempengaruhi
kualitas
papan
partikel.
Menurut
Widarmana (1977), kerapatan adalah suatu ukuran kekompakan partikel dalam lembaran.
B. Saran 1.
Papan partikel sekam padi dengan kerapatan sedang, disarankan untuk penggunaan kontruksi ringan.
2.
Disarankan apabila untuk meningkatkan kekuatan mekanik papan partikel, maka kerapatannya harus lebih ditingkatkan.
3.
Disarankan penggunaan sekam padi untuk papan partikel, pembelahan sekam harus lebih sempurna untuk menghindari rongga pada papan partikel yang menyebabkan spring back.
??
DAFTAR PUSTAKA
Achmadi. 1990. Kimia kayu. Departemen Pendidikan dan Kebudayaan. Direkt orat Jendral Pendidikan Tinggi Pusat Antar Universitas Ilmu Hayat. Institut Pertanian Bogor, Bogor. Anonim, 1996. SNI Mutu Papan Partikel SNI 03-2105-1996. Dewan Standarisasi Nasional-DSN. Anonim, 1999. Mutu Papan Partikel. Dewan Standarisasi Nasional Bandung. Anonim, 2000. Vademecum Kehutanan Kehutanan Indonesia. Jakarta.
Indonesia.
Direktorat
Jendral
Anonim 2006. Papan Partikel, Badan Standardisasi Nasional, SNI 03-31052006. Anonim, 2006. Prospek dan Arah Pengembangan Agribisnis Unggas. Badan Litbang Pertanian. Jakarta: Departemen pertanian. Anonim, 2009, Rice Knowenge Bank, International Rice Research Institute. Available from: http://www.knowedgebank.irri.org/rkb/index.php/rice milli/byproducts-and-their-utilization/rice-husk. Diakses tanggal 22 Juli 2016. Anonim,
2010. Badan Pusat Statistik, Perkembangan Beberapa Indikator Utama Sosial-Ekonomi Indonesia www.bps.go.id. Diakses tanggal 20 Juli 2016.
Anonim, Badan Pusat Statistika, Agustus 2011 Perkembangan Beberapa Indikator Utama Sosial-Ekonomi Indonesia Available from: www.bps.go.id. Diakses tanggal 21 Juli 2016. Anonim, 2015. Badan Pusat Statistik. Data Produksi Padi, Jagung dan Kedelai. Indonesia Tahu 2015. Blomquist, R.F. 1983. Fundamentals of Adhesion. In : Blomquist, R.F.,Christiansen, A.W., Gillespie, R.H. and Myers, G.E. (Eds.) Adhesive Bonding of Wood and Other Structural Materials. Forest Product Technology USDA Forest Service and The University of Wisconsin. Chap. 1. Erniawati. 2006. Papan Partikel Berbahan Dasar Sekam Padi (Oryza sativa L) diakses dalam makalah Kumpulan Materi Kuliah Teknik Pertanian, 25 Oktober 2012. Forest Products Society. 1999. Wood Handbook: Wood as An Engineering Material.: Forest Pruducts Society. USA.
??
Haygreen and bowyer. 1989. Hsil Hutan dan Ilmu Kayu. Terjemahan : S.A.Hadikusumo. Gajah Mada University Press, Yogyakarta. Hiziroglu, Salim. 2007. Composite Panel Manufacture From Bamboo-Rice Straw-Eucalytus In Thailand. Paper disampaikan pada Studium General Fakultas Kehutanan Institut Pertanian Bogor Tanggal 17 Januari 2007, Bogor. Iskandar 2009. Proses Pembuatan Papan Partikel . Pusat Penelitian dan Pengembangan Hasil Hutan, Dept. Kehutanan, Bogor. Maloney, T.M. 1993. Modern Particleboard and Dry Prosess Fiberboard Manufacturig. Miller Freeman Publications. San Fransisco. Massijaya, M.Y. 1997. Development of Boards Made from Waste News Paper (Ph. D. Dissertation, unpublished). Tokyo Japan: Tokyo University. Mediastika, C.E. 2005, Akustika Bangunan. Penerbit Erlangga. Jakarta. Mediastika, C.E. 2008, Kajian Serapan Bunyi Komposit Jerami Padi Yang di Campur Semen, Erlangga. Jakarta. Ngafwan (2006). Pemanfaatan Limbah Sekam Padi untuk Pembuatan Komposit Hambat Panas Menggunakan Marik Resin, Media Mesin, Vol. 7, No. 1, 17-13. Parasad dkk, 2001. Pengaruh Abu Sekam Padi Dalam Komposisi Gudang Putih , 27, 639-635. Perdana, A. S, 2007. Budidaya Padi Gogo. Mahasiswa Swadaya Penyuluhan Dan Komunikasi Pertanian UGM, Yogyakarta. Sastradimadja, E 1998. Papan Majemuk Seri Papan Semen. Seksi Teknologi Kayu Jurusan Teknologi Hasil Hutan Fakultas Kehutanan Universitas Mulawarman. Samarinda. Somaatmadja, D. (1980), Penelitian dan Pengembangan Industri.
, Badan
Sunandar dkk, 2008. Pembuatan ceramic Foam dari Gipsum dan Abu Sekam Padi Untuk Aplikasi Isolasi Panas dan Peredam Suara. ITB. Bandung. Sutigno, E.A 1994. Teknologi Papan Partikel Datar. Pusat Penelitian dan pengembangan Hasil Hutan dan Sosial Ekonomi Kehutanan, Bogor. Templeton. D., Saunders, D. 1997. Acoustic Design. The Architectural Press. London. Tsoumis, G. 1991. Science and Techhnology of Wood. Van Nostran New York.
??
Widarmana, S. 1997. Panil-panil Berasal Dari Kayu Sebagai Bahan Bangunan. Dalam : Surjokusumo, S. dan T.R. Mardikanto (Eds). Risalah (Proceedings) Seminar Penerapan Teknologi Kayu Modern Untuk Pembangunan Kontruksi Kayu di Indonesia. Pengurus Pusat Persaki, Bogor. Widiyanto, A. 2002. Kualitas Papan Partikel Kayu Karet (Hevea Brasiliensis Muell. Arg) dan Bambu Tali (Gigantochlon apus Kurz) dengan Perekat Likuida Kayu. Skripsi, Jurusan Teknologi Hasil Hutan. Fakultas Kehutanan. Institut Pertanian Bogor, Bogor. Yusuf, 1999. Teknologi Papan Komposit. Pusat Penelitian dan pengembangan Hasil Hutan dan Sosial Ekonomi Kehutanan, Bogor.
41
Lampiran 2. Perhitungan Komposisi Partikel dan Perekat.
A. Berat papan yang diinginkan kondisi kering tanur = Papan partikel dengan kerapatan 1 gram/cm³ = Panjang x Lebar x Tebal x Kerapatan; = 31 x 31 x 0,8 x 1 = 768,8 gram B. Perbandingan Partikel dan Perekat = 80 : 20 Partikel
x 768,8 gram = 615,03 gram KA 0 %
Perekat
x 768,8 gram = 153,76 gram
Berat Perekat Basah (RC) 49,5 = 310,62 gram Berat partikel dalam 1x adukan (asumsi KA 3%) x 615,04 gram = 633,49 gram Berat Mat (KA 20%)
x 615,04 gram = 738,048 gram
Jadi Partikel + Perekat = 738,048 gram + 15376 gram = 891,808 gram
42
Tabel 3. Data Perhitungan Mencari Nilai Rataan Kerapatan Papan Partikel Sekam Padi No
Berat Kering Tanur (gram)
1 2 3 4 5
Volume (cm³)
69,1102 71,2435 75,5349 72,0765 68,5158 Nilai Rataan
107,7462 105,5318 128,5837 115,3885 117,3517
Kerapatan (gram/cm³) 0,6414 0,6751 0,5874 0,6247 0,5839 0,6225
Tabel 4. Data Perhitungan Kadar Air Papan Partikel Sekam Padi No
Berat Awal (gr)
1
78,9728
Berat Kering Tanur (gr) 71,6832
2 3
79,2406 88,345
72,7591 79,4685
8,9082 11,1698
4
85,4007
76,5249
11,5986
5
75,3415
67,9013
10,9574
Rata-rata
Kadar Air (%) 10,1692
10,5606
Tabel 5. Data Hasil Perhitungan Pengembangan Tebal Maksimum Papan Partikel Sekam Padi No
Tebal Awal (cm)
Tebal Setelah Direndam (cm)
1 2 3 4 5
0,906 0,913 1,023 0,9725 1,021
1,1405 1,0315 1,238 1,172 1,2065 Rata-rata
Pengembangan Tebal (%) 25,8830 12,9792 21,0166 20,5141 18,1685 19,7123
43
Tabel 6. Hasil Pengujian Modulus of Elasticity (MoE) Papan Partikel Sekam Padi No 1 2 3 4 5
40 40 50 40 40
0.3 0.4 0.4 0.4 0.3
L (cm)
b (cm)
h (cm)
15 15 15 15 15 Rata-rata
5.13 5.07 5.21 5.3 5.24
0.9 0.92 1.07 1.04 0.93
MOE (kg/cm2) 30082.0639 21371.8612 16524.7441 14152.6543 26691.4637 21764.5574
Tabel 7. Hasil Pengujian Modulus of Rupture (MoR) Papan Partikel Sekam Padi No
P (kg)
1 2 3 4 5
14 14 12 8 8
L (cm) 15 15 15 15 15 Rata-rata
b (cm)
h (cm)
MoR (kg/cm3)
5.14 5.19 5.26 5.22 5.21
0.87 0.93 1.01 1.03 1.01
80.9672 70.1742 50.3194 32.5033 33.8682 53.5664
Tabel 8. Data Perhitungan Keteguhan Rekat Internal Papan Partikel Sekam Padi No 1 2 3 4 5
Beban Maksimum (kg) 62 30 26 26 20
Luas Permukaan Contoh uji (cm2)
Keteguhan Rekat Internal (kg/cm2)
25,8015 26,4192 27,0399 26,3168 26,9878
2,4029 1,1355 0,9615 0,9879 0,7411 1,2458
Rata-rata
44
Tabel 9. Hasil Pengujian Daya Kuat Cabut Sekrup (DKCS) Papan Partikel Sekam Padi No
DKCS
1 2 3 4 5 Ratarata
42 kg 40 kg 28 kg 12 kg 8 kg 26 kg
45
Gambar 5. Proses Pengambilan Bahan Baku
Gambar 6. Proses Pengangkutan Bahan Baku
46
Gambar 7. Proses Pengovenan Bahan Baku
Gambar 8. Proses Penimbangan Bahan Baku
47
Gambar 9. Proses Penimbangan Perekat
Gambar 10. Proses Pencampuran Bahan
48
Gambar 11. Proses Pemadatan Awal
Gambar 12. Proses Pengepressan
49
Gambar 13. Proses Pelepasan Papan Partikel
Gambar 14. Papan Partikel Jadi
50
Gambar 15. Proses Penimbangan Contoh Uji
Gambar 16. Universal Testing Machine