Slide 1 of 40 - Rhinelander School District

Slide 1 of 40 Copyright Pearson ... 36–1 The Skeletal System Slide 34 of 40 Copyright Pearson Prentice Hall Skeletal System Disorders 4. ... END OF SE...

2 downloads 580 Views 662KB Size
Biology

Slide 1 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Slide 2 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

The Skeleton

(All organisms need structural support. Unicellular organisms have a cytoskeleton.

Multicellular animals have either an exoskeleton (arthropods) or an endoskeleton (vertebrates).)

Slide 3 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

The Skeleton

(The human skeleton is composed of bone. Bones and other connective tissues, such as cartilage and ligaments, form the skeletal system).

Slide 4 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

The Skeleton

What are the functions of the skeletal system?

Slide 5 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

The Skeleton

A. The skeleton:

• 1. supports the body. • 2. protects internal organs. • 3. provides for movement. • 4. stores mineral reserves. • 5. provides a site for blood cell formation. • Osteo=bone Slide 6 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

The Skeleton

Skull

B. axial skeleton: (blue) supports central axis of body.

Sternum Ribs

Vertebral column

Axial Skeleton Copyright Pearson Prentice Hall

Slide 7 of 40

36–1 The Skeletal System

The Skeleton

Clavicle Scapula

C. Appendicular Skeleton (grey):

Humerus

bones of arms and shoulder area; pelvis and legs

Radius Pelvis Ulna Carpals Metacarpals Phalanges Femur

Appendicular Skeleton Copyright Pearson Prentice Hall

Patella Fibula Tibia Tarsals Metatarsals Phalanges

Slide 8 of 40

36–1 The Skeletal System

Structure of Bones

Structure of Bones What is the structure of a typical bone?

Slide 9 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones

D. Bone Structure: 1. solid network of living cells 2. protein fibers surrounded by deposits of calcium salts.

Slide 10 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones Haversian canal Compact bone

Spongy bone

Compact bone

Periosteum

Spongy bone Bone marrow

Osteocyte Artery Vein Periosteum Copyright Pearson Prentice Hall

Slide 11 of 40

36–1 The Skeletal System

Structure of Bones

(The bone is surrounded by a tough layer of connective tissue called the periosteum. Blood vessels in the periosteum carry oxygen and nutrients to the bone. )

Slide 12 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones

(Beneath the periosteum is a thick layer of compact bone. Running through compact bone is a network of tubes called Haversian canals that contain blood vessels and nerves.)

Slide 13 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones

(Spongy bone is found inside the outer layer of compact bone. Spongy bone is also found in the ends of long bones and in the middle of short, flat bones. Spongy bone adds strength without adding mass.)

Slide 14 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones

(Osteocytes, or mature bone cells, are embedded in the bone matrix. Other bone cells—osteoclasts and osteoblasts—line the Haversian canals and the surfaces of compact and spongy bone.



Osteoclasts break down bone.



Osteoblasts produce bone.)

Slide 15 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Bones

E. Bone marrow: soft tissue inside the cavities of bones.

F. 2 types of bone marrow:



1. Yellow marrow is made up of fat cells.



2. Red marrow produces red blood cells, some kinds of white blood cells, and platelets.

Slide 16 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Development of Bones

G. Development of Bones 1. skeleton of an embryo is composed of cartilage.

2. Cartilage: * strong connective tissue that supports the body

* softer and more flexible than bone.

Slide 17 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Development of Bones

H. Ossification: Cartilage is replaced by bone

(Bone tissue forms as osteoblasts secrete mineral deposits. When the osteoblasts become surrounded by bone tissue, they mature into osteocytes.)

Slide 18 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

I.

Development of Bones

Growth plates: area at either end of long bone that cartilage grows.

(Growth of cartilage at these plates causes bones to lengthen. Gradually, this cartilage is replaced by bone tissue. By early adulthood, cartilage in the growth plates is replaced by bone, the bones become ossified, and growth stops.) Slide 19 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

J. Types of Joints 1.Joint:

place where one bone attaches to another bone * permit bones to move without damaging each other.

Slide 20 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

What are the three different kinds of joints?

Slide 21 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

K. 3 kinds of joints: (Classified depending on type of movement)

Slide 22 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

1. Immovable Joints a. allow no movement.

b. bones are interlocked and held together by connective tissue, or they are fused together. c. example: skull bones.

Slide 23 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

2. Slightly Movable Joints a. small amount of restricted movement.

b. example: adjacent vertebrae.

Slide 24 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

3. Freely Movable Joints a. movement in 1 or more directions.

b. 4 types freely movable joints: 1. ball-and-socket joints 2. hinge joints 3. pivot joints 4. saddle joints

Slide 25 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

Ball-and-socket joints permit movement in many directions.

Slide 26 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

Hinge joints permit back-and-forth motion.

Slide 27 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

Pivot joints allow one bone to rotate around another.

Slide 28 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Types of Joints

Saddle joints permit one bone to slide in two directions.

Slide 29 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Joints

(Structure of Joints In freely movable joints, cartilage covers the surfaces where two bones come together. Joints are also surrounded by a fibrous capsule that holds the bones together while still allowing them to move.)

Slide 30 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Joints Muscle

Knee Joint

Tendon Femur

Patella Bursa Ligament Synovial fluid Cartilage Fat Fibula Tibia Slide 31 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Joints

C. ligaments: hold bones together in joints

(Synovial fluid forms a thin lubricating film over the surface of the joint. Synovial fluid enables the bones to slide past each other more smoothly.)

Slide 32 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Structure of Joints

(In some freely movable joints small sacs of synovial fluid called bursae form. A bursa reduces the friction between bones of a joint and also acts as a shock absorber.)

Slide 33 of 40 Copyright Pearson Prentice Hall

36–1 The Skeletal System

Skeletal System Disorders

4. Skeletal System Disorders A.Excessive strain on a joint may produce inflammation, (in which excess fluid causes swelling, pain, heat, and redness.)

B. Bursitis: Inflammation of a bursa C. Arthritis: Inflammation of the joint D. Osteoporosis: is caused by a loss of calcium in the bone. Slide 34 of 40 Copyright Pearson Prentice Hall

36–1

Click to Launch:

Continue to:

- or -

Slide 35 of 40 Copyright Pearson Prentice Hall

36–1

Red blood cells, some kinds of white blood cells, and platelets are produced by a. red marrow. b. cartilage. c. yellow marrow. d. osteocytes.

Slide 36 of 40 Copyright Pearson Prentice Hall

36–1

Mature bone cells are called a. periosteum.

b. osteocytes. c. bone marrow. d. Haversian canals.

Slide 37 of 40 Copyright Pearson Prentice Hall

36–1

In freely movable joints, what covers the surfaces where the two bones come together? a. ligaments b. cartilage c. bursae d. tendons

Slide 38 of 40 Copyright Pearson Prentice Hall

36–1

During ossification, cartilage is replaced by a. bone.

b. ligament. c. marrow. d. tendon.

Slide 39 of 40 Copyright Pearson Prentice Hall

36–1

The shoulder joint is an example of a a. ball-and-socket joint.

b. hinge joint. c. pivot joint. d. saddle joint.

Slide 40 of 40 Copyright Pearson Prentice Hall

END OF SECTION