REGRESI DAN KORELASI LINEAR SEDERHANA Regresi Linear
Tujuan Pembelajaran Menjelaskan regresi dan korelasi Menghitung dari persamaan regresi dan standard error dari
estimasi-estimasi untuk analisis regresi linier sederhana Menggunakan ukuran-ukuran yang diperoleh dari analisis regresi dan korelasi untuk membuat dugaan-dugaan interval dari variabel-variabel terikat bagi keperluan peramalan (forecasting) Menghitung dan menjelaskan makna dari koefisien-koefisien korelasi dan determinasi dalam menggunakan teknik-teknik analisa korelasi linier sederhana
Regresi Linear
Pendahuluan
Dikembangkan pertama kali oleh seorang ahli genetika : Francis Galton
Regresi : peramalan, penaksiran, atau pendugaan
Analisa regresi digunakan untuk meramalkan atau memperkirakan nilai dari satu variabel dalam hubungannya dengan variabel lain atau mempelajari dan mengukur hubungan statistik yang terjadi antara dua atau lebih varibel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi majemuk dikaji lebih dari dua variabel. Variabel Terikat (Dependent Variable / Response Variable) Variabel yang akan diestimasi nilainya Variabel bebas (independent variable atau explanatory variable)
Variabel yang diasumsikan memberikan pengaruh terhadap variasi variabel terikat dan biasanya diplot pada sumbu datar (sumbu-x). Regresi Linear
Analisa regresi Gagasannya adalah meminimalkan penyebaran total nilai y dari garis.
SSE besar
SSE = Sum of Squared Errors (Jumlah Kuadrat Kesalahan)
Regresi Linear
SSE kecil
Regresi atau garis kuadrat terkecil Adalah garis dengan SSE yang terkecil
Analisis Regresi Linear y
yˆ a bx
Garis regresi ditempatkan pada data dalam diagram sedemikian rupa sehingga penyimpangan keseluruhan titik terhadap garis lurus adalah nol
y (+)
y (-)
y (+) y (0) y (+) y (+)
y (0)
y (-)
y (-) y (-)
a
Error / kesalahan Regresi Linear
x
Gambar 2 Garis regresi linier pada diagram pencar
.
Analisis Regresi Linear Persamaan Matematis: Ŷ = a + bx Ŷ = penduga (bagi rata-rata Y untuk X tertentu) variabel terikat (variabel yang diduga) x = Variabel bebas (variabel yang diketahui) a,b = Penduga parameter A dan B (koefisien regresi sampel) a = intersep (nilai Y, jika X = 0) b = slop (kemiringan garis regresi) Regresi Linear
b adalah Kemiringan (slope) yang menunjukkan perubahan rataan sebaran peluang bagi Y untuk setiap kenaikan X satu satuan.
E(Y) = 15.6 + 1.09X
contoh hubungan POT dengan prestasi belajar siswa. Kemiringan 1 = 1.09 menunjukkan bahwa kenaikan skore POT satu satuan akan menaikkan rataan sebaran peluang bagi Y sebesar 1.09. Regresi Linear
Analisis Regresi Linear Rumus: a Y bX
2 Y X i i X i X iYi i
i
i
n X X i i i 2 i
b
n X i Yi X i Yi i
i
i
i
n X i2 X i i i
Regresi Linear
2
2
dan
Latihan Dari suatu praktikum fisika dasar diperoleh data yang menghubungkan variabel bebas x dan variabel terikat y seperti ditunjukkan dalam tabel berikut. Uji ke1 2 3 4 5 6 7 8
Regresi Linear
x 6 9 3 8 7 5 8 10 56
Tabel 1
y 30 49 18 42 39 25 41 52 296
Analisis Regresi Linear Tabel perhitungan: Uji kex 1 6 2 9 3 3 4 8 5 7 6 5 7 8 8 10 56
y 30 49 18 42 39 25 41 52 296
x 56 x 7 n
8
Regresi Linear
xy 180 441 54 336 273 125 328 520 2257
x2 36 81 9 64 49 25 64 100 428
y 296 y 37 n
Tabel 2
8
y2 900 2401 324 1764 1521 625 1681 2704 12920
Analisis Regresi Linear Kolom y2 ditambahkan pada tabel meskipun belum digunakan untuk perhitungan persamaan garis regresi. Nilai tersebut akan digunakan kemudian. Jadi dengan menggunakan hasil pada tabel, nilai dari konstanta a dan b dapat ditentukan: b
n xy x y n
x2 x
2
8(2257) (56)(296) 1480 5,1389 2 288 8(428) (56)
a y bx 37 (5,1389)(7) 1,0277
Jadi persamaan garis regresi linier yang menggambarkan hubungan antara variabel x dan y dari data sampel pada percobaan/praktikum di atas adalah: yˆ a bx 1,0277 5,1389x Dengan menggunakan persamaan garis regresi yang diperoleh, maka dapat diperkirakan hasil yang akan diperoleh (nilai y) untuk suatu nilai x tertentu. Misalnya untuk x = 4 maka dapat diperkirakan bahwa y akan bernilai: yˆ a bx 1,0277 5,1389x =1,0277 + 5,1389(4) = 21,583 Regresi Linear
Analisis Regresi Linear 60 50
y = 5.1389x + 1.0278
y
40 30 20 10 0 0
2
4
6
8
x
Gambar. Garis regresi untuk contoh soal 1 Regresi Linear
10
12
Latihan 2 Misalnya X adalah persentase kenaikan biaya periklanan dan Y adalah persentase kenaikan hasil penjualan. Berapakah besarnya ramalan persen kenaikan penjualan jika biaya iklan dinaikkan menjadi 15%? X (%)
Y (%)
1
2
2
4
4
5
5
7
7
8
9
10
10
12
Tabel 3 Regresi Linear
Standard Error of Estimate Standard Error Regresi & Koefisien Regresi Sederhana Standard error merupakan indeks yang digunakan Untuk mengukur tingkat ketepatan regresi (pendugaan) dan koefisien regresi (penduga) atau mengukur variasi titik-titik observasi di sekitar garis regresi.
Dengan menggunakan data dan tabel perhitungan pada latihan1, maka standard error estimasi dari garis regresi yang diperoleh adalah: s y ,x
y 2 a y b xy
n2 (11,920) 1,0277(296) 5,1389(2,257) 1,698 82
Regresi Linear
Dengan standard error, batasan seberapa jauh melesetnya perkiraan kita dalam meramal data dapat diketahui.
Bila semua titik observasi berada tepat di garis regresi maka kesalahan baku akan bernilai sama dengan nol. Berarti perkiraan yang dibuat sesuai dengan data sebenarnya.
Regresi Linear
Koefisien regresi a dan b (penduga a dan b) Koefisien regresi a (penduga a), kesalahan bakunya dirumuskan:
Koefisien regresi b`(Penduga b) sb
s y ,x
x2
x n
2
1,698
56 428
Regresi Linear
8
2
1,698 0,283 6
Pendugaan Interval Koefisien Regresi (Parameter A dan B) Pendugaan Parameter Regresi Dari nilai atau derajat kepercayaan (1 - ) yang telah ditentukan, interval pendugaan parameter A dan B dapat ditentukan, yang diberikan masing-masing oleh: b t sb B b t sb dan 2
2
a t sa A a t sa 2
2
Pendugaan interval parameter B
Pendugaan interval parameter A
dengan derajat kebebasan (n-2)
Artinya, dengan interval keyakinan 1 – α dalam jangka panjang, jika sampel diulang-ulang, 1 - α kasus pada interval tersebut akan berisi A atau B yang benar
Regresi Linear
Latihan soal 2 Tentukan interval dari parameter A dan B pada latihan soal 1 dengan α = 5% atau tingkat keyakinan 95% dan jelaskan artinya!
Regresi Linear
Pengujian Hipotesis Koefisien Regresi (Parameter A da B) Pengujian hipotesis bagi parameter A dan B menggunakan uji t, dengan langkah- langkah sbb: a. Menentukan formulasi hipotesis 1) Untuk parameter A: H0 : A = A0 H1 : A > A0 A < A0 A ≠ A0
2) Untuk parameter B: H0 : B = B0, mewakili nilai B tertentu, sesuai hipotesisnya H1 : B > B0 , berarti pengaruh X terhadap Y adalah positif B < B0, berarti pengaruh X terhadap Y adalah negatif B ≠ B0, berarti X mempengaruhi Y
b. Menentukan taraf nyata (αlfa) dan nilai t tabel Taraf nyata dan nilai t tabel ditentukan dengan derajat bebas (db) = n - 2 Regresi Linear
Pengujian Hipotesis Koefisien Regresi (Parameter A da B) c. Menentukan kriteria pegujian 1) H0 diterima jika t0 ≤ tα H0 ditolak jika t0 > tα 2) H0 diterima jika t0 ≥ -tα H0 ditolak jika t0 < -tα
d. Menentukan nilai uji statistik
1) Untuk parameter A
2) Untuk parameter B
3) H0 diterima jika –tα/2 ≤ t0 ≤ tα/2 H0 ditolak jika t0 < -tα/2 atau t0 > tα/2
e. Membuat kesimpulan apakah H0 diterima ataukah ditolak Regresi Linear Sederhana
Peramalan (Prediksi) Peramalan
Ŷ sebagai penduga memiliki nilai yang mungkin sama atau tidak sama dengan nilai sebenarnya. Untuk membuat Ŷ sebagai penduga yang dapat dipercaya, maka dibuat pendugaan bagi Y.
Peramalan (Prediksi)
Peramalan (Prediksi) Peramalan Tunggal Peramalan Interval Individu
Regresi Linear
Peramalan (Prediksi) Peramalan Interval Rata-rata
Regresi Linear
Latihan Soal: Dengan menggunakan data dari tabel 3, Buatlah: a. Ramalan interval untuk individu Y, jika biaya iklan dinaikkan menjadi 15% dengan tingkat keyakinan 99%! b. Ramalan interval untuk rata-rata E(Y), jika biaya iklan dinaikkan menjadi 15% dengan tingkat keyakinan 99%!
n = 7 cari tα/2;5
Regresi Linear
Lihat tabel distribusi t