Prof. Eduardo Loureiro, DSc.
Introdução Transmissão de Calor é a disciplina que estuda a transferência de energia entre dois corpos
materiais que ocorre devido a uma diferença de temperatura. Quanta energia é transferida e em que taxa esta energia é transferida. Sempre que existir uma diferença de temperatura em um meio ou entre meios diferentes haverá, necessariamente, transferência de calor. A Termodinâmica, por sua vez, lida com os estados que delimitam o processo no qual uma
interação ocorre (inicial e final). Não se estuda a natureza da interação e nem a taxa (velocidade) na qual a interação ocorre.
Por exemplo: Consideremos uma barra quente de metal mergulhada em um recipiente com água. A termodinâmica pode ser usada para determinar a temperatura final de equilíbrio do conjunto barra – água. Não poderá nos dizer quanto tempo se leva para alcançar o equilíbrio, nem a temperatura da barra durante o processo. A Transmissão de Calor pode ser usada para fornecer a temperatura da barra e da água ao longo do processo.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução MODOS DE TRANSMISSÃO DE CALOR:
CONDUÇÃO:
CONVECÇÃO:
RADIAÇÃO:
Através de um sólido ou de um fluido estacionário.
De uma superfície para um fluido em movimento
Troca líquida de calor entre duas superfícies.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONDUÇÃO
Transferência de energia de partículas mais energéticas para partículas de menor energia de um meio devido às interações que ocorrem entre elas. (Atividade atômica e molecular). Esta energia está relacionada à vibração e movimento das moléculas ou átomos.
•Quando as moléculas colidem energia é transferida das mais energéticas para as de menor energia. •A temperatura em um ponto está relacionada com a energia das moléculas naquele ponto. •Maiores temperaturas significam regiões de maiores energias moleculares. •Então, na presença de um gradiente de temperatura a transferência de calor ocorre na direção da diminuição da temperatura.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONDUÇÃO
A equação para a taxa de transferência de calor por condução é conhecida como a Lei de Fourier:
qx k
dT dx
onde,
qx = fluxo de energia (W/m2) ou taxa de transferência de calor na direção x, por unidade de área
perpendicular à direção da transferência.
k = propriedade característica do meio material denominada condutividade térmica (W/mK)
dT/dx = gradiente de temperatura na direção x. (o sinal negativo é necessário porque o calor é transferido no sentido da diminuição de temperatura e a condutividade térmica é positiva) Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONDUÇÃO
A equação para a taxa de transferência de calor por condução é conhecida como a Lei de Fourier:
qx k
dT dx
(o sinal negativo é necessário porque o calor é transferido no sentido da diminuição de temperatura e a condutividade térmica é positiva) A taxa de transferência de calor por condução qx [W] através de uma parede plana de área A é dada por:
qx qx A
pois
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
qx
qx A
Introdução CONDUÇÃO EXEMPLO: A parede de um forno industrial é construída em tijolo refratário com espessura de 0,15m e condutividade térmica de 1,7 W/mK. Medições efetuadas durante a operação em regime estacionário revelaram temperaturas de 1400 e 1150 K nas superfícies interna e externa da parede do forno. Qual a taxa de calor perdida através de uma parede com dimensões de 0,5m por 3,0m?
qx k
T T 1150 1400 2833 W dT k 2 1 1,7 dx dx 0,15 m2
qx qx A 28330,5 3 4250W
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONVECÇÃO O modo de transferência de calor por convecção abrange dois mecanismos: • movimento molecular aleatório (difusão) assim como na condução. • movimento global ou macroscópico do fluido (agrupados de moléculas)
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONVECÇÃO
Camada limite hidrodinâmica: região no fluido onde a velocidade varia de zero (em y = 0) até um valor U associado ao escoamento do fluido. Camada limite térmica: Se as temperaturas do fluido e da superfície forem diferentes existirá uma região no fluido onde a temperatura varia entre Tsup (y = 0) até T, associada à região de escoamento afastada da superfície. A camada limite térmica pode ser menor, igual ou maior que a camada limite hidrodinâmica. A contribuição do movimento molecular aleatório (difusão) predomina próximo à superfície onde a velocidade do fluido é baixa. Em y = 0, u = 0 e a troca de calor se dá somente por este mecanismo. A contribuição do movimento global do fluido deve-se ao fato de que a camada limite cresce à medida em que o escoamento progride ao longo do eixo X. O calor que é conduzido para o interior desta camada é "arrastado“ na direção do escoamento, sendo transferido para o fluido em movimento no exterior da camada limite.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONVECÇÃO
Podemos classificar a transferência de calor por convecção FORÇADA, quando utilizamos equipamentos para aumentar a velocidade do fluido e convecção NATURAL quando esta ocorre naturalmente. A equação da taxa de transferência de calor por convecção é conhecida como a Lei de Newton do Resfriamento:
q hATs T onde, Ts= temperatura da superfície T = temperatura do fluido h = coeficiente de transferência de calor por convecção.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução CONVECÇÃO
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução RADIAÇÃO
A radiação térmica é a energia emitida por toda a matéria que se encontra a uma temperatura não nula, atribuída às mudanças na configuração eletrônica dos átomos ou moléculas que constituem a matéria. A energia é transportada por meio de ondas eletromagnéticas (fótons). A radiação não necessita da presença de um meio material. De fato, a transferência de calor por radiação é mais eficiente no vácuo.
Poder emissivo , E, da superfície: é a taxa pela qual a energia é liberada por unidade de área (W/m2). Existe um limite superior para o poder emissivo previsto pela lei de Stefan-Boltzmann:
EMAX Ts
4
Onde Ts é a temperatura absoluta (K) da superfície e é a constante de Stefan-Boltzmann ( = 5,67 x 10-8 W/m2K4) Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução RADIAÇÃO
Uma superfície que emite o limite máximo acima é chamada de radiador ideal ou CORPO NEGRO. O fluxo de calor emitido por um corpo real é menor que o emitido por um corpo negro à mesma temperatura:
E Ts
4
onde é uma propriedade radiante da superfície denominada Emissividade, que depende fortemente do material e acabamento da superfície. A radiação também pode incidir sobre a superfície a partir de sua vizinhança. Independente da fonte, a taxa em que todas as radiações incidem sobre uma área unitária da superfície é designada por Irradiação, G.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução RADIAÇÃO
Uma porção, ou toda a irradiação pode ser absorvida pela superfície aumentando a energia térmica do material. A taxa em que a energia radiante é absorvida pode ser avaliada conhecendo-se a Absortividade, , uma outra propriedade da superfície. Gabsorvida = G
(0 1)
Frações da radiação incidente podem ser absorvidas, refletidas ou transmitidas pelo material.
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução RADIAÇÃO
Para a condição da figura, a irradiação G pode ser aproximada pela emissão de um corpo negro à temperatura da vizinhança Tviz.
G Tviz4 Se a superfície tiver, = (denominada superfície cinza) a taxa líquida de transferência de calor por radiação é dada por: 4 EMAX G Tsup qrad Tviz4
Considerando também a taxa de transferência por convecção: 4 q qconv qrad hATsup T A Tsup Tviz4
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
Introdução RADIAÇÃO
EXEMPLO: Uma tubulação de vapor sem isolamento térmico passa através de uma sala onde o ar e as paredes se encontram a 25oC. O diâmetro externo do tubo é de 70 mm, a temperatura de sua superfície é de 200oC e sua emissividade é de 0,8. Quais são o poder emissivo e a irradiação da superfície? Se o coeficiente de transferência por convecção natural da superfície com o ar é de 15 W/m2K, qual a taxa de calor perdida pela superfície do tubo?
E T
4 sup
0,8 5,67 10
8
W 473 2270 2 m 4
4 q hDLTsup T DLTsup Tviz4
q
G Tviz4 5,67 108 2984 447
q W 577 421 998 L m
Transmissão de Calor - Prof. Eduardo Loureiro - POLI/UPE
W m2